FORMER COMPUTER CIRCUITS SITE 145 MARCUS BOULEVARD, HAUPPAUGE, NEW YORK CERCLA-02-2000-2036

168634

2009 ANNUAL SITE MANAGEMENT REPORT

SUBMITTED TO:

United States Environmental Protection Agency 290 Broadway New York, New York 10007

PREPARED BY:

P.W. Grosser Consulting, Inc. 630 Johnson Avenue, Suite 7 Bohemia, New York 11716 Phone: 631-589-6353 Fax: 631-589-8705

Kris Almskog, Senior Project Manager Thomas Melia, Senior Hydrogeologist

PWGC Project Number: TED0001

Email: <u>(150 %) Auto, et a 6 h</u> Email: <u>(1959 from Autourit a c</u>

MARCH 1, 2010

CONTE	NTS		Page
SITEM	ANAGEN	MENT CERTIFICATION	i
1.0	INTROI	DUCTION	1
	1.1 1.2 1.3 1.4	Site Description 1.1.1 Site Topography 1.1.2 Regional Geology/Hydrology 1.1.3 Site Geology/Hydrology Site History Summary of Previous Investigations and Enforcement Actions Future Site Use	1 2 3 4
2.0	SUMM	ary of environmental conditions	8
. :	2.1 2.2 2.3 2.4	Source Areas	8 8
3.0	SITE MA	ANAGEMENT	10
	3.1 3.2 3.3	Engineering Controls 3.1.1 SVE System Operation and Maintenance 3.1.2 System Performance Sampling 3.1.3 Mass Removal and Emission Rates Institutional Controls Ambient Air Sampling	., 10 10 11 12
4.0	CONC	LUSIONS & RECOMMENDATIONS	14
5.0	REFERE	NCES	15
TABLES			
TABLE 1 TABLE 2 TABLE 3	<u>2</u> 3	System Performance Sampling Analytical Results (TCE) Mass Removal Ambient Air Sampling Analytical Results (Trichloroethene)	
FIGURE	<u> </u>		 :
FIGURE FIGURE		Site Plan Indoor Air Sampling Locations	
APPEN	DICES		
APPENI APPENI APPENI	DIX B	SVE System Monitoring Forms Laboratory Analytical Reports Draft Institutional Controls	

SITE MANAGEMENT CERTIFICATION

P.W. Grosser Consulting, Inc. (PWGC) certifies for the calendar year 2009, qualified environmental professionals within my firm had primary direct responsibility for implementation of the remedial program for the Former Computer Circuits Superfund Site (CERCLA-02-2000-2036).

PWGC certifies that the Interim Remedial Measure (IRM) dated July 2005 and Remedial Action Work Plan (RAWP) dated May 2009, approved by USEPA on December 21, 2009, were implemented and that all requirements in those documents have been substantively complied with.

PWGC certifies that significant remedial activities, including operation of Soil Vapor Extraction (SVE) Systems under control of PWGC, were performed and/or overseen by qualified environmental professionals, and that environmental samples, including ambient air and SVE system influent, collected from the site were collected by qualified environmental professionals in accordance with the procedures detailed in the IRM and/or RAWP.

PWGC certifies that for the calendar year 2009:

- Existing on-Site Engineering Controls (ECs) are in-place and effective, and proposed Institutional Controls (ICs) have been provided to USEPA for review.
- Existing remediation systems at the site are performing as designed.
- The ability of existing ECs and ICs to protect the public health and environment have not been significantly impacted.
- The operation and maintenance plan for existing ECs was implemented as detailed.
- Access is available to the Site by EPA to evaluate continued maintenance of existing ECs and ICs.

1/2 M

Thomas Melia Senior Hydrogeologist Thus Umily .

Kris Almskog Senior Project Manager

1.0. INTRODUCTION

P.W. Grosser Consulting, Inc. (PWGC) has been contracted by 145 Marcus Boulevard, Inc. to prepare an Annual Site Management Report for the former Computer Circuits Site, located at 145 Marcus Blvd, Hauppauge, New York. The site was placed on the National Priorities List (NPL) effective May 10, 1999 and assigned United States Environmental Protection Agency (EPA) Index No. CERCLA-02-2000-2036. This Annual Site Management Report has been prepared in accordance with Section 12.2 of the approved Remedial Action Work Plan (RAWP) (PWGC, May 2009). The RAWP was prepared as required by the Administrative Order for Remedial Action for Computer Circuits Superfund Site (CERCLA-02-2009-2015) (USEPA, April 1, 2009) and the Record of Decision (ROD) for Computer Circuits Superfund Site (EPA, September 2008) to specify the ongoing and future activities necessary to implement the remedy selected for the site. The RAWP was approved by EPA on December 21, 2009.

1.1 Site Description

The former Computer Circuits site is a 2.5 - acre industrial site located within an industrial park in Hauppauge, New York (Figure 1). It is bordered by Marcus Boulevard to the west and other industrial/commercial businesses to the north, south, and east. The site is occupied by a 21,600 square foot, one-story building, which is located near the center of the site (Figure 2). Asphalt driveways and parking areas are present to the north, south, and east of the building, and extend the length of the property. The paved areas and building area occupy approximately 50 percent of the total area of the site. The remainder of the site consists of a landscaped area (75 x 240 ft) at the front (west side) of the building, and a vacant, unpaved area approximately 60 ft x 150 ft to the rear (east) of the building. A thin wooded strip is present (approximately 10 to 15 ft wide) at the rear of the vacant area along the east property line. The approximate building interior layout is illustrated in Figure 3.

There are no underground or aboveground storage tanks at the site. The heating system is fueled by natural gas which is piped to the site via underground connections along the north side of the building. Sanitary wastes are discharged to an on-site septic system located at the front (west side) of the building. There are multiple storm drains (catch basins) present on the site located in the east parking lot.

1.1.1 Site Topography

The topographic relief at the site is generally flat with a gentle slope to the west toward Marcus Boulevard. At the very rear of the site, along the east property line the land surface drops steeply approximately eight feet to the neighboring property.

1.1.2 Regional Geology/Hydrology

The former Computer Circuits site is underlain by glacial deposits, specifically the Ronkonkoma Terminal Moraine, which consists of heterogeneous sand, gravel, and boulders with occasional silt and clay lenses. Glacial deposits are approximately 150 feet in thickness and underlain by more than 1000 feet of Cretaceous coastal plain sediments. The Smithtown Clay is seen one to two miles to the west of the site at a depth within the glacial sediments of up to 100 feet (Lubke, 1964).

The uppermost of the Cretaceous formations is the Magothy, which consists of more than 600 feet of highly stratified layers of sand, gravel, silt and clay that dip gently to the southeast. The Magothy Formation is underlain by the Raritan Clay Member and the Lloyd Sand Member, respectively. These formations are underlain by an erosional bedrock surface composed of granite, diorite, gneiss and schist (Lubke, 1964).

The saturated highly permeable glacial sediments and the underlying Magothy Formation are regarded as the upper aquifer (Lubke, 1964). Long Island is made up of a series of sand and gravel aquifers. All of Long Island's water supply comes from underground water held in aquifers. Three major aquifers make up the Long Island aquifer system. In sequence from shallowest to deepest, the major Long Island aquifers are: the Upper Glacial, the Magothy and the Lloyd Aquifers. The Ronkonkoma Moraine area is a recharge area in which groundwater flow has a downward component, which likely transports groundwater from the glacial deposits to the Magothy formation. The site is situated some distance north of a regional groundwater divide with groundwater flowing to the northeast, east and southeast. Located north of the divide, groundwater in the vicinity of the site generally flows in an east-northeast direction toward the headwaters of the Nissequogue River. The glacial water-table elevation may be slightly higher than the potentiometric surface of the Magothy beneath the site (see Figure 12 RI Report December 2006 - Regional Magothy Potentiometric Surface, March 1983); however, the water table elevation declines more rapidly to the north and east, so that the vertical component becomes upward. Estimated hydraulic conductivity for the glacial sediments in this area is 200 ff/day (McClymonds and Franke, 1972).

1.1.3 Site Geology/Hydrology

The former Computer Circuits site overlies an interconnected aquifer system consisting of the upper glacial deposits and the underlying Magothy Formation. Depth to groundwater in the underlying glacial aquifer is approximately 100 feet below land surface (bls). The saturated thickness of the Upper Glacial Aquifer at the site is approximately 95-110 feet based on an estimated depth of 200 feet to the surface of the Magothy Aquifer. The lithologic description of the upper sediments from soil borings advanced during previous investigations at the site identifies the materials as fine sand with small amounts of gravel to a depth of 60 to 70 feet bls. The sand becomes coarser with depth, grading into a medium sand from 70 to 100 feet bls followed by a medium to coarse sand from the water table to a depth of approximately 130 feet bls. From 130 feet to 200 feet bls the material then returns to a fine to medium sand.

According to previous investigations performed at the site, including the Remedial Investigation/Feasibility Study (RI/FS) documented by The Remedial Investigation Report for the Former Computer Circuits Site (PWGC, December 2006) and The Feasibility Study for the Former Computer Circuits Site (PWGC, June 2007), groundwater flow is generally northeast to east at an average gradient of 0.001 ft/ft, with some localized variations. The horizontal hydraulic conductivity across the site, as determined from rising head tests performed in the site monitoring wells, ranged from 51 to 177 ft/day with a mean value of 130 ft/day. Using the average water table gradient of 0.001 and a porosity of 25 percent, the groundwater seepage velocity of the site ranges from 0.23 to 0.78 feet per day with a mean of 0.57 feet per day.

There are no surface water bodies near the site. Artificial recharge basins are located throughout the industrial park to accept storm water run-off from roadside catch basins. Since the depth to groundwater in the area is approximately 100 feet below surface, the water table surface does not intersect the bottom of these structures.

1.2 Site History

From 1969 to 1991, the property was owned by MCS Realty and leased to various companies. Computer Circuits was the first tenant and occupied the entire property from 1969 to 1977. From 1977 to 1980 the site was leased to a trade school. NAV-TEC, an assembler of electronic components, occupied the site from 1980 to 1983, followed by a tax form preparation company (TYMSHARE) from 1983 to 1989. In July of 1991, MCS Realty sold the property to 145 Marcus Boulevard Corporation. The site was most recently occupied by Algorex Power and Control Electronics, Incorporated (APACE), an electronics manufacturing and design company specializing in power and motion control products. APACE vacated the property in April, 2002 and the property remained vacant until the Fall of 2005, at which time the southwest corner of the building was occupied by Castle Financial Advisors.

Computer Circuits was a manufacturer of printed circuit boards for both military and commercial applications. Waste liquids from the circuit board manufacturing process (containing copper sulfate, nickel, sulfuric acid, hydrochloric acid, lead fluoroborate, fluorides, copper, gold cyanate, ammonia, lead, nitric acid, and tin) were discharged to five industrial leaching pools located southeast of the building. Photographic chemicals and trichloroethylene, associated with a dark room and the silk screening room located in the northern part of the facility, were discharged to a single industrial leaching pool on the north side of the building. In January of 1973, a pipe connection was discovered between the Computer Circuits industrial leaching pools on the south side of the building and a catch basin on Marcus Boulevard by the Suffolk County Department of Environmental Control (SCDEC). After the connection was removed in 1974, wastewater was observed flowing over the surface of the ground into the storm drain system. In 1975, Computer Circuits applied for and was issued a State Pollution Discharge Elimination (SPDES) Permit (No. 0075485) from the New York State Department of Environmental Conservation (NYSDEC). The permit, which was effective from April of 1975 to April of 1977, regulated the discharge of copper, iron, lead, nickel, silver and phenol to the industrial leach pool system.

On numerous occasions between 1976 and 1977, the SCDEC collected samples from the industrial leaching pools and found that copper and lead were consistently detected at levels above the SPDES permit limits. An inspection conducted in 1976 revealed that the site was littered with trash, broken barrels, and spilled piles of chemicals and blue/green colored sludge.

In 1976, in response to requests by the SCDEC, Computer Circuits hired a contractor who excavated and filled the five industrial leaching pools located near the southeast corner of the building and installed two new leaching pools in this general area, which were also intended for industrial waste disposal. In 1977, the SCDEC traced the building's plumbing to identify connections to two leaching pools located on the north

side of the building. It was determined by the SCDEC that one of the pools was part of a sanitary system that was connected to an unused bathroom. The second pool was connected to sinks which were located in a silk screen fabrication room and a photographic dark room. The silk screening process utilized trichloroethylene (TCE) to remove ink from the screens prior to rinsing with water in the sink. The industrial leaching pool was reported to be completely "clogged" and was capped inside the building sometime between 1977 and 1978 (SCDEC). Computer Circuits vacated the premises in 1978.

1.3 Summary of Previous Investigations and Enforcement Actions

The following is a brief chronological summary of the sampling/analytical programs and remedial actions conducted at the former Computer Circuits site, as well the regulatory activities that enforced these actions. The locations of the monitoring wells referenced in this section illustrated by Figure 3.

Suffolk County Department of Health Services, Water Pollution Control Unit (formerly SCDEC), 1976 and 1977 SCDEC sampled the five on-site industrial leaching pools and found exceedances for copper and lead. Additional actions during this period are discussed the preceding section.

NYSDEC, 1977

The NYSDEC obtained an injunction against Computer Circuits and all site operations ceased. Computer Circuits later vacated the site.

NYSDEC, December, 1986

The NYSDEC placed the site on the New York Registry of Inactive Hazardous Waste Disposal Sites under a Class 2 classification, meaning that the site posed a significant threat to the public health or the environment and that further action will be required.

Roux Associates, Inc., May 3, 1989

Roux Associates, under contract to the former property owner (MCS Realty), conducted a soil and groundwater investigation at the site, as required by the NYSDEC under an Order on Consent (Number W10061885) between the NYSDEC and the former property owner, MCS Realty. A magnetometer survey was conducted. Ten soil borings were drilled at various locations throughout the site, including west of the building, near the industrial leaching pools at the southeast and northwest corners of the building. Three monitoring wells, MW1, MW2 and MW3 were installed and sampled. Volatile organic compounds (VOCs) were not detected in the soil above NYSDEC guidance values. Groundwater analysis from the monitoring wells indicated VOCs, including trichloroethene (TCE); 1,2-dichloroethene (1,2-DCE) and 1,1,1-trichloroethane (1,1,1-TCA) present above NYSDEC standards and metals including cadmium, chromium, copper, lead, nickel and zinc present at concentrations below NYSDEC standards. No significant anomalies were detected during the magnetometer survey.

PWGC, May 1994

PWGC, as consultant for the new property owner, 145 Marcus Boulevard Corporation, investigated a sinkhole at the site, located southeast of the corner of the building. Construction debris and a barrel containing a nickel solution were discovered in the sinkhole area. This material was excavated, stockpiled, and removed from the site in November 1995.

PWGC, September through November 1995

PWGC, as consultant for the property owner conducted a soil quality investigation. Five soil borings were drilled, one near the main sanitary cesspool system west of the building, one at the industrial leach pool located on the north side of the building, and three around the former location of the industrial leaching pools south of the building. Groundwater samples were also collected from the three existing monitoring wells at this time. VOCs were not detected in the soil samples above NYSDEC guidance values. Metals including lead, silver, copper, nickel and zinc were detected in the soil samples above the NYSDEC guidance values. Groundwater samples indicated the presence of VOCs, including TCE, 1,2-DCE and 1,1,1-TCA and tetrachloroethene (PCE) above NYSDEC standards. Metals including zinc were detected slightly above the NYSDEC ambient water quality standards (AWQS). Additional stained soil was also removed from the sinkhole area and the remains of a leaching pool, believed to be one of the two industrial replacement pools, were discovered.

Parsons Engineering, February 1996

Parsons Engineering, under contract to NYSDEC, conducted a soil vapor survey at the site. The samples were analyzed, using a mobile laboratory, for TCE, 1,1,1-TCA, and 1,2-dichloroethane (1,2-DCA). Elevated levels (>10,000 ppb) of TCE were detected in soil vapor in the immediate vicinity of the industry pool on the north side of the building and adjacent to the discharge line which connects the pool where it exits the building. Elevated levels of TCE and 1,1,1-TCA were detected in a soil vapor probe located along the east side of the building, just north of the exterior door.

Malcolm Pirnie, Inc., March through May 1996

Under contract to the USEPA, Malcolm Pirnie conducted a Hazard Ranking System sampling investigation of the site. Fourteen subsurface soil samples were collected from the industrial leaching pool areas, the sinkhole area, and background locations on the property. Metals including copper and nickel were detected above NYSDEC guidance values in the soil samples. VOCs were not detected above NYSDEC guidance values. In addition, three monitoring wells MW4, MW5 and MW6 were installed at the site. In May, groundwater samples were collected from the three new wells and two of the previously existing wells (MW2, MW3). VOCs including TCE, 1,1,1-TCA, PCE and 1,2-DCE were detected above NYSDEC standards in each of the wells. Analysis for metals detected zinc above NYSDEC standards in MW2.

EPA, May 10, 1999

The EPA placed the former Computer Circuits site on CERCLA's National Priorities List (NPL) of sites. The EPA took over as the lead regulatory agency at the site and provided oversight for the implementation of an RI/FS.

PWGC, September 2000 through January 2003

On September 29, 2000, 145 Marcus Boulevard Corporation voluntarily entered into an administrative order on consent to conduct an RI/FS to determine the nature and extent of contamination at the site. PWGC performed the RI field work from December 17, 2001 through July 24, 2002. RI field activities included a geophysical survey of the site, excavation of test pits and collection and analysis of soil, groundwater and air samples. The draft Remedial Investigation Report was submitted to the EPA on January 3, 2003. It identified TCE at levels of concern in indoor air in the onsite building, in soils just beneath the slab of the northern portion of the building, and in soils within the leaching pool adjacent to the north side of the building.

PWGC, September 28, 2004 through December 15, 2005

Based on the presence of TCE in air samples collected from the building, an Order of Consent was signed on September 28, 2004 that provided for the performance of a removal action by 145 Marcus Boulevard Corporation. The Order called for the construction and operation of both a soil vapor extraction (SVE) system and sub-slab depressurization system at the site. PWGC completed of the system on December 15, 2005, which included a single vertical extraction well installed within the contaminated zone of the north industrial leaching pool, and a single horizontal extraction well installed beneath the concrete slab of the former silk screening room. Both extraction wells are remediating impacted soils through mass transfer from the sorbed to the vapor phase. The horizontal well installed beneath the building serves as an abatement function system to remove accumulated vapors beneath the slab and prevent them from migrating to the building's interior. The system has been in continuous operation since.

EPA, February 2008 through November 2008

The EPA performed a soil vapor intrusion sampling study of the onsite building in 2008. From February 26 to 28, 2008, 30 sub-slab gas wells were installed in the building. An additional sub-slab soil gas well was installed on March 18 and 19, 2008 and samples were collected from each of the 31 sub-slab gas wells. Additional sub-slab gas samples and indoor air samples were collected on May12 and 13, 2008. TCE was detected in indoor air samples at concentrations slightly exceeding the indoor air cleanup levels specified in the 2004 Order on Consent. PCE and trans-1,2-Dochloroethene were also detected in indoor air samples. TCE was detected at levels of concern in sub-slab samples. PCE, trans-1,2-Dichloroethene, 1,1,1-TCA and cis-1,2-Dichloroethene were also detected in sub-slab samples. The results of this study are documented by a November 21, 2008 letter report prepared by Lockheed Martin Technology Services, Environmental Services/REAC for the EPA.

EPA, September 2008 through April 2009

The EPA conducted activities in response to the findings of the soil vapor intrusion sampling study, including the optimization of the existing SVE system on the north side of the onsite building and the installation of a second SVE system on the south side of the site. On September 30, 2008, the EPA issued a Record of Decision (ROD) documenting the selected remedy for the site. An Administrative Order on Consent (Index No. CERCLA 02-2009-2015) was signed by the EPA on March 31, 2009, the terms of which were later agreed upon by the 145 Marcus Boulevard Corporation. The Order addressed the selected remedy specified by the ROD.

PWGC, May 2009

In accordance with the AOC for Remedial Action and ROD, PWGC prepared a draft Remedial Action Work Plan (RAWP) for the site which included: an Operation and Maintenance Manual for the SVE systems, a Site Management Plan, a Monitoring Plan (for performing monitoring of groundwater, indoor air, sub-slab vapor, and the SVE systems), a Quality Assurance Plan, a Health and Safety Plan, and reporting requirements. The RAWP specified ongoing and future activities necessary to implement the remedy selected for the site. The draft RAWP was submitted to EPA for review on May 29, 2009.

EPA, December 2009

EPA approved the draft RAWP for the site with out significant comments on December 21, 2009.

1.4 Future Site Use

The former Computer Circuits site is used for commercial and industrial purposes. The commercial/industrial zoning for the site is not expected to change in the near future. As of December 2009, the building is occupied as follows:

- The southwest portion of the building is occupied by Castle Financial Advisors, LLC, a financial services company employing approximately 12 persons.
- The northern portion of the building is occupied by Lambda, Inc., an electronics manufacturer employing approximately 20 persons. Lambda's space is used as executive offices and for product testing, no manufacturing is done on-site.
- The southeastern portion of the building is occupied by Goldson, Nolan, Connolly, Nasis & Dornfeld LLP (GNC), a law firm employing approximately 12 to 15 persons.

2.0 SUMMARY OF ENVIRONMENTAL CONDITIONS

The following summary of environmental conditions is based on the findings of previous environmental investigations performed at the former Computer Circuits site.

2.1 Source Areas

The contaminant source areas at the site consisted of industrial cesspools used for wastewater from operations at the Computer Circuits facility. Cesspools were located both beyond the southeast corner and on the north side of the site building. Previous investigations identified these areas as contributing to contamination in the underlying aquifer. The primary contaminants identified in source areas include 1,1-dichloroethene, 1,1,1-trichloroethane, 1,2-dichloroethane, acetone, chloromethane, methylene chloride, TCE, PCE and vinyl chloride. Recent groundwater data suggests that consistent contamination source areas are no longer present at the site.

2.2 Soil

Shallow borings collected between 2000 and 2003 revealed concentrations of TCE exceeding the NYSDEC Unrestricted Use Recommended Soil Cleanup Objective (RSCO) of 470 ug/kg in the vicinity of the industrial leaching pool on the north side of the building, as well as beneath the concrete slab floor in the former silk screening room. The highest reported TCE concentration in a shallow boring was 12,000 ug/kg, detected in 2001 from a soil sample collected in the top two feet below the concrete slab in the northern portion of the building. Samples collected in 2002 from deep soil borings also revealed concentrations of TCE exceeding the NYSDEC RSCO at the base of the former industrial leaching pool on the north side of the building and in the vicinity of the leaching pools off of the southeast corner of the building. A TCE concentration of 55,000 ug/kg was detected in a 2002 sample collected 22 feet bls, at the base of the former leaching pool on the north side of the building.

Previous investigations conducted in 1995 also identified concentrations of metals (primarily nickel and copper) at the base depth (8-22 ft) of the primary industrial leaching pools near the southeast corner of the building. The maximum detected concentration of copper was 12,300 mg/kg. The NYSDEC Unrestricted Use RSCO for copper is 50 mg/kg. Nickel was detected above the NYSDEC Unrestricted Use RSCO in only one subsurface soil sample. The deposit of metals was limited to the immediate area occupied by the former pools near the southeast corner of the building and was clearly related to the discharge of industrial wastes to the on-site drainage system.

The industrial leaching pool located on the north side of the building also contained concentrations of metals, primarily nickel and silver. Most of the detections were in the upper 5 to 7 feet of soil, however silver was detected at a concentration of 168 mg/kg in a soil sample collected 20 feet bls. The NYSDEC Unrestricted Use RSCO for silver is 2 mg/kg.

2.3 Groundwater

The primary contaminants identified in groundwater beneath the former Computer Circuits were TCE and PCE. During the 2002 RI, both of these contaminants were detected above their respective New York State

Groundwater Standards (GWS) and EPA Maximum Contaminant Levels (MCLs) at concentrations of 280 ug/L and 270 ug/L, respectively. Monitoring data collected in 2008 indicated that PCE and TCE concentrations have continued to decrease significantly in wells located within site boundaries, as w.ell as in wells located both upgradient and downgradient of the site. In instances where TCE or PCE exceeded MCLs, the concentrations were approaching the MCL value. In addition, since PCE was reportedly never used at the site and only trace amounts of PCE were detected in site soils, the contaminant is believed to come predominantly from a source or sources upgradient to the site.

2.4 Indoor Air

Air samples collected inside the site building on July 24, 2002 yielded detections of 1,1-dichlorothene, 1,1,1-trichloroethane, 1,2-dichloroethane, acetone, chloromethane, methylene chloride, TCE, and vinyl chloride. As a result of these findings, a SVE system was installed to remediate contaminated soils in the contaminant-source area on the north side of the building and to mitigate vapor intrusion into the building. Only two VOCs were detected during a May, 2008 sampling event, namely, TCE and trans-1,2-dichlorothene. The highest detected concentrations of TCE and trans-1,2-dichlorothene were 6.07 ug/m3 and 0.381 ug/m3, respectively. Soil-gas samples collected around the perimeter of the building and beneath the building slab yielded maximum TCE and PCE concentrations of 80,613 ug/m3 and 8,815 ug/m3, respectively. As discussed in Section 1.3, additional corrective actions were taken after the May, 2008 sampling event, including the installation of a second SVE system on the south side of the site building.

3.0 SITE MANAGEMENT

3.1 Engineering Controls

There are currently two soil vapor extraction (SVE) systems (North SVE System and South SVE System) operating at the site. SVE is a remedial technology that reduces concentrations of VOCs adsorbed to soils in the unsaturated zone by evaporating the volatiles and drawing the resulting vapor towards extraction wells. The vapors are then removed through extraction wells by applying a vacuum, and vapors are then treated with granulated activated carbon (GAC) prior to being exhausted to the atmosphere. Additional information regarding the North and South SVE systems is detailed in the Operation and Maintenance (O&M) Manual for the site (Appendix A of the RAWP).

3.1.1 SVE System Operation and Maintenance

The North SVE system operated continuously throughout 2009, with the exception of local power outages on June 17th, and December 3rd, 2009. At the request of EPA, the North SVE system has been drawing solely from the horizontal extraction well installed beneath the northern portion of the building since September 2008.

Prior to approval of the RAWP (approved December 21st, 2009), EPA was responsible for operation and maintenance of the South SVE System. PWGC began operation and maintenance of the South SVE system upon approval of the RAWP.

PWGC conducts routine operation, monitoring and maintenance (OM&M) visits to assess the operation of the SVE systems on a monthly basis. OM&M visits consist of assessing the system's current condition, documenting gauge readings, taking system air stream readings with a handheld photoionization detector (PID) and, when scheduled collecting system air samples for laboratory analysis. System parameters such as flow rates and gauge readings are documented on SVE system monitoring forms, included as **Appendix** A.

3.1.2 System Performance Sampling

During 2009, PWGC collected system performance samples from the North SVE system in March, June, September, and December, and from the South SVE system in December. At minimum, system performance samples were collected from the system influent lines. In March, June, and September, additional samples were collected from the North SVE system GAC midpoint, and system effluent. Samples are collected using SUMMA vacuum canisters in accordance with EPA/REAC SOP# 1704 Summa Canister Sampling, EPA/REAC SOP# 2008 General Air Sampling Guidelines, and the approved RAWP. The Canisters are transported under proper chain of custody procedures to a New York State Department of Health certified laboratory for analysis by EPA method TO-15 for VOCs. System performance sampling analytical data for TCE are summarized in Table 1; copies of the laboratory analytical reports are included in Appendix B.

Table 1 - System Performance Sampling Analytical Results (TCE)

Data	* P	North SVE System		South SVE System
Date	Influent	Mid-GAC	Effluent	Influent
3/11/2009	470	164.00	152	NS
6/23/2009	439	1,100.00	186	· NS
9/9/2009	524	1,220.00	163	· NS
12/29/2009	106	NS	NS	79.2

Notes

All concentrations measured in ug/m3

ND - Not detected above the laboratory detection limit

NS - No sample collected.

Refer to previous reports for historic data.

3.1.3 Mass Removal and Emission Rates

Analytical data from SVE system influent air samples are used to calculate actual mass removal rates. Mass removal rates for the North SVE system are summarized in **Table 2**. To date, PWGC has collected only one influent air sample from the South SVE system; a minimum of two samples are required to calculate mass removal rates. Based on mass removal calculations, the North SVE system has removed approximately 12.73 pounds of total VOCs through December 2009.

Table 2 - Mass Removal

Sample	Trichloroethene	Total VOCs	Average SVE	Average VOC	Total VOCs Removed
Date			Flow Rate	Removal Rate	
	(ug/m3) \	(ug/m3)	(cfm)	(lbs/hr)	(lbs)
12/20/2005	690	1,006	110	NA	NA .
3/21/2006	0	23	110	2.115E-04	0.48
6/20/2006	. 0	0	110	4.728E-06	0.01
1/5/2007	352	758	100	1.417E-04	0.30
4/20/2007	550	1,310	70	2.705E-04	0.57
6/26/2007	948	3,657	70	6.498E-04	1.38
10/9/2007	2;890	5,076	70	1.142E-03	. 2.42
12/20/2007	698	2,344	70	9.707E-04	2.05
2/25/2008	1,030	2,442	70	6.261E-04	1.33
6/30/2008	1,530	2,551	70	6.532E-04	1.38
9/26/2008	1,100	1,421	1 70	5.196E-04	1.10
12/18/2008	. 331	478	70	2.484E-04	0.53
3/11/2009	470	717	. 60 .	1.340E-04	0.28
6/23/2009.	439	686	.60	1.573E-04	0.33
9/9/2009	524	767	60	1.629E-04	. 0.34
12/29/2009	106	188	60	1.071E-04	0.23

Total Mass Removed Since 12/20/2005 (libs)

3.2 Institutional Controls

Institutional controls are intended to protect human health from exposure to existing contamination while remediation is ongoing. Institutional controls may include environmental easements/restrictive covenants that limit the use of the site to commercial or industrial, restrict new construction at the site, and restrict the use of groundwater at the site.

Currently, no institutional controls have been finalized for the site. A draft institutional control has been submitted to USEPA for review. It is anticipated that institutional controls will be filed during 2010. A copy of the draft institutional control is included as **Appendix C**.

3.3 Ambient Air Sampling

In March, June and September 2009, PWGC collected one ambient air sample at one interior location (AS-2) defined in the IRM work plan. Following approval of the RAWP in December 2009, PWCG collected eight ambient air samples at locations specified in the RAWP. Current and historic indoor air sample locations are illustrated in **Figure 2**. Indoor air samples were collected to assess potential work place exposure while the building is occupied, and to support a decision to terminate operation of the SVE system as described in the AOC.

Ambient air samples were collected using SUMMA vacuum canisters in accordance with the procedures outlined in EPA SOP# 1704 SUMMA Canister Sampling. NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York (2006), and the approved RAWP. Samples were collected over an eight hour period between the hours of 7 A.M. and 5 P.M., in an effort to gather samples representative of conditions encountered by the office workers. Since the building does not have a subsurface basement or multiple stories, air quality samples were collected from the main floor within the breathing zone (3 to 5 feet above the floor). The office ventilation system was left on during sampling events. Analysis of the air samples was in accordance with EPA 625R-96 "Compendium of Methods for the Determination of Organic Compounds in Ambient Air", TO15. Analytical data for TCE are summarized in Table 3; copies of the laboratory analytical reports are included in Appendix B.

Table 3 - Ambient Air Sampling Analytical Results (TCE)

Sample		Sample	e Date	
Location	3/11/2009	6/24/2009	9/9/2009	12/29/2009
IA-1/AS-2	0.107	0.368	1.45	0.107 U
IA-2	NS	NS	NS	0.107 U
IA-3	NS	NS	. NS	0.972
IA-4	NS	NS	NS	0.107 U
IA-5	NS	NS	NS	0.107 U
IA-6	NS	NS	NS	0.805
IA-7	NS	, NS	NŚ	0.854
IA-8	NS	NS	N\$ ·	1.05

Notes:

All concentrations measured in ug/m3

NS - No sample collected.

Refer to previous reports for historic data.

AS-2 corresponds to interior sample location identified in the IRM work plan

U - Indicates that analyte was not detected above the laboratory MDL

4.0 CONCLUSIONS & RECOMMENDATIONS

PWGC has prepared this Annual Site Management Report in accordance with Section 12.2 of the approved RAWP for the site. Based on the information presented above, PWGC offers the following conclusions:

- Engineering controls at the site consist of two SVE systems (North SVE system and South SVE system).
- Draft institutional controls have been submitted to USEPA for review.
- Engineering Controls (i.e., North and South SVE systems) at the site have been operating as designed and effectively removing VOCs from the subsurface of the site.
- Existing engineering controls at the site continue to be effective. The North SVE system did not experience any significant down time during the period covered by this report. The South SVE system did not experience any significant down time while under control of PWGC during the period covered by this report. As of December 31, 2009, both the North and South SVE systems appear to be functioning as designed.
- PWGC certifies (see Site Management Certification, page i) that existing engineering controls at
 the site are in place, and performing as designed. The ability of existing engineering controls to
 protect the public health and environment has not been significantly impacted, and the operation
 and maintenance plan for existing engineering controls was implemented as detailed.
- Periodic site inspections were performed in accordance with Section 8.3 of the approved RAWP.
 Periodic operation and maintenance inspections are detailed in Section 3.1.1; inspection forms are included as Appendix A.
- Data for indoor air samples collected during 2009 are summarized in Table 3. Sample locations are illustrated in Figure 2. Ambient air samples were collected from within the building in March, June, September and December 2009. During the March, June and September sampling events, one indoor air sample was collected from sampling location AS-2, as specified in the IRM. Following approval of the RAWP in December 2009, eight indoor air samples were collected from throughout the building as specified in the RAWP. Throughout 2009, TCE Concentrations at sample location AS-2/IA-1 ranged from non-detect (less than 0.107 μg/m³) (December) to 1.45 μg/m³ (September). During the December 2009 sampling event, TCE concentrations throughout the building ranged from non-detect (less than 0.107 μg/m³) at several locations, to 1.05 μg/m³ at sample location IA-8.
- Laboratory analytical reports are included as Appendix B.
- Performance of treatment systems at the site is summarized in Section 3.1:3. Based on calculated mass removal rates, the North SVE system removed approximately 1.18 pounds of total VOCs from the subsurface of the site during 2009 and a total of approximately 12.73 pounds of total VOCs since system start up in 2005. To date, PWGC has collected only one influent air sample from the South SVE system; a minimum of two samples are required to calculate mass removal rates.

Based on the conclusions detailed above, PWGC recommends that implementation of the approved RAWP, be continued unmodified at this time.

5.0 REFERENCES

Administrative Order on Consent for Removal Action, United States Environmental Protection Agency, Region 2, 2004, Index Number CERCLA-02-2004-2005

Administrative Order on Consent for Remedial Action, United States Environmental Protection Agency, Region 2, 2009, Index Number CERCLA-02-2009-2015

Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air - Second Edition, United States Environmental Protection Agency, Office of Research and Development, January 1999

Final Remedial Investigation Report, Former Computer Circuits Superfund Site, P.W. Grosser Consulting, Inc., February 2007

Guidance for Evaluating Soil Vapor Intrusion in the State of New York, Final, New York State Department of Health, October 2006

Guidelines for the Control of Toxic Ambient Air Contaminants, New York State Department of Environmental Conservation, November 1997, New York State DAR-1

Interim Remedial Measure, Former Computer Circuits Superfund Site, P.W. Grosser Consulting, Inc., July 2005

Remedial Action Work Plan, Former Computer Circuits Superfund Site, P.W. Grosser Cónsulting, Inc., May 2009

Summa Canister Sampling, United States Environmental Protection Agency, Environmental Response Team, July 1995

FIGURES

APPENDIX A SVE SYSTEM MONITORING FORMS

Date/Time:		- U (
Technician:	· - (-	2)	<u> </u>	
System Operating: ((Yes)/	No)			
System Operating. (Tes. 7	NO)	1 2		
System Parameters		<u> </u>		
Influent Flow Meter	€0	SCFM		•
Influent Vacum		"H2O		•
Biower Vacum		"H2O		•
Pre-GAC Pressure		PSI	`	
Mid-GAC Pressure		PSI	1 . '	
Post-GAC Pressure		PSI	Į.	
Condensate Level		nches		•.
Condensate Drained		gallons		
Bleed Valve Position		open/closed		•
Sample Ports			7	
	PID (ppm)	Sampled	Analysis / Cor	nments
Vertical Well Extraction Line		***		
Horizontal Well Extraction Line	0. (
Pre-Gac	0.3			
Mid-GAC	0.1	~		
Post-GAC				
Repairs / Modifications / Comm	ante	×	•	
riopano, incamoanono, comi		į		
Vertical Les	Closed			· .
0 - 112 - 1	Carra			
<u> </u>				,
				·
				
·	· · · · · · · · · · · · · · · · · · ·			
		· · ·		
				
				
	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·
	······································			<u> </u>
				1.00

Date/Time:	1-14-6	59	
Technician:	711		 -
System Operating: (Wes /	No)		
System Parameters	·		·
Influent Flow Meter Influent Vacum Blower Vacum Pre-GAC Pressure Mid-GAC Pressure Post-GAC Pressure Condensate Level Bleed Valve Position	5 - 5 " - 33 F - 3 F - 5 F - 6 F - 6 F - 7	SCFM PH2O PSI PSI PSI nches gallons gen/closed	
Sample Ports			
77-11-1107-115-1	PID (ppm)	Sampled	Analysis / Comments
Vertical Well Extraction Line	Sing of the second		
Horizontal Well Extraction Line Pre-Gac	8. e	<i>y-</i>	
Mid-GAC	5.0	-	
Post-GAC	6.0		
Repairs / Modifications / Comm	rents		
		· · · · · · · · · · · · · · · · · · ·	
		•	
·			
			N

Date/Time:			3-11-09
Technician	: ,		M
System Operating:	((Yes //	No)	
System Parameters			
Influent Flow Meter		60	SCFM
Influent Vacum		>-15	 "H2O
Blower Vacum		-32	 "H2O
Pre-GAC Pressure		3 :	PSI
Mid-GAC Pressure	•	0	 PSI
Post-GAC Pressure	,	0	PSI
Condensate Level		$\overline{}$	inches
Condensate Drained			gallons
Bleed Valve Position			øρen/closed

Sample Ports

	PID (ppm)	Sampled	Analysis / Comments
Vertical Well Extraction Line	\	C W	
Horizontal Well Extraction Line	0-1	900	
Pre-Gac	0.1	4°5 .	70-15
Mid-GAC	0-0	· J 05	70-15
Post-GAC	0.0	4.05	-10-15

Repairs / Modifications / Comments Vertical (05-7) SOMMA Canisto ID Rojulater ID Stort Vac. Sample Final Vac JofWest 423 0230 - 30 200 GAC MIDER 0304 - 30 t If went 0077 156 -30

Date/Time:	1/8	09		
Technicia'n:	. 1	TW		
System Operating: (Yes /	No)			
System Parameters				•
Influent Flow Meter	(,0	SCFM		
Influent Vacum	7-15	"H2O		
Blower Vacum	- 30	- "H2O		•
Pre-GAC Pressure		PSI		
Mid-GAC Pressure	0	PSI .		
Post-GAC Pressure	C	PSI		
Condensate Level	O	inches		
Condensate Drained		gallons		
Bleed Valve Position		open/closed		
Control of the Contro				
Sample Ports	DID (
\(\frac{1}{2} \)	PID (ppm)	Sampled	Analysis / Com	ments
Vertical Well Extraction Line	ļ. <u></u>	N		
Horizontal Well Extraction Line	0.0	N		
Pre-Gac	0.0	N		
Mid-GAC	0.0	1/		·
Post-GAC	0.0	~		
Repairs / Modifications / Comm	, vante	•		
Nepairs / Would cations / Comm	ients			
· Nortical Extraction	2 (close)		regardente and profess and accompanies and analysis and a series and resident	
1) 123 17 1.6 22 1				
The same the same the same the same same same the same the same same same to the same the sam				
				·

A STATE OF THE PARTY OF THE PAR	·····	· · · · · · · · · · · · · · · · · · ·		
	t			
· ·		·		
			·	

Date/Time:	5/23	109	•	
Technician:		TM		
System Operating: (ves /	No)			: ,
System Parameters				
Influent Flow Meter	55	SCFM		
Influent Vacum	5-15	"H2O	•	
Blower Vacum	- 30	"H2O		
Pre-GAC Pressure	ð	PSI	•	•
Mid-GAC Pressure	U	PSI		
Post-GAC Pressure	ن	PSI		
Condensate Level	0	inches		
Condensate Drained	-	gallons	•	
Bleed Valve Position		open/closed		
Sample Ports				
	PID (ppm)	Sampled	Analysi	s / Comments
Vertical Well Extraction Line		N		, , , , , , , , , , , , , , , , , , , ,
Horizontal Well Extraction Line	· O. 1	N	····	
Pre-Gac	0.0	N	1	······································
Mid-GAC	0.1	N		
Post-GAC	0.1	N		
	· ·			
Repairs / Modifications / Comm	ients			
Vertical Extension	1418/1 1/16	Sed		······································
Vertical	00 - 7 	300		
			•	
The substitution of the second substitution of t	· · · · · · · · · · · · · · · · · · ·			

Date/Time:

Technician:	- Jul	
System Operating: (Yes //	No)	
System Parameters		
Influent Flow Meter Influent Vacum Blower Vacum Pre-GAC Pressure Mid-GAC Pressure Post-GAC Pressure Condensate Level	SCFM "H2O "H2O PSI PSI PSI inches	
Condensate Drained Bleed Valve Position	gallons open/closed	
Sample Ports)	
Vertical Well Extraction Line Horizontal Well Extraction Line Pre-Gac Mid-GAC Post-GAC	PID (ppm) Sampled	Analysis / Comments
Repairs / Modifications / Comm	ents exper arisal Restet 1 ext week	system + resolublike)

Date/Time:	6/23/09	
Technician:	77/1	
Santan Constitution (CO)	NI.	
System Operating: (Yes)/	No)	
System Parameters		
Influent Flow Meter	⊌ ○ SCFM	
Influent Vacum	>-15 "H2O	
Blower Vacum	3 <u>0</u> "H2O	
Pre-GAC Pressure	<u>∂</u> /PSI	
Mid-GAC Pressure	c PSI	
Post-GAC Pressure	O PSI	
Condensate Level	Q inches	
Condensate Drained	gallons	
Bleed Valve Position	open/closed	
Sample Ports	DID (astas)	
Vertical Well Extraction Line	PID (ppm) Sampled	Analysis / Comments
Horizontal Well Extraction Line	- Ve	(a) W/A
Pre-Gac	V	10-15
	0-0 % Y	16-15
Mid-GAC Post-GAC	\ 6 \ Y	TD-15
Post-GAC	0.0	TO: 15
Repairs / Modifications / Comm	nents	
Vertical Extraction	الدريال على المحال	and the state of t
	The second secon	T
	The second second section is the second seco	in many day ny samanahan a san-samanahandahanan yan-manyakandahan yana manayaran anda alimanan da samanan da s
The second secon	The state of the s	and the second s
	and the second s	en e
The second of the second secon	and the second commence and the second secon	and the second s
	and the second s	na na antana mana antana a Antana antana
	the same of the sa	
	The state of the s	The second secon
	and the second s	The second secon
	· · · · · · · · · · · · · · · · · · ·	The second secon
and the same of th		
to the second se		And the second s
- parameter 1994 - 199		
	6	

Date/Time:	7-15-09	•
Technician:	TM	
System Operating: ((es)/	No)	
System Parameters		
Influent Flow Meter	OOSCFM	* 1
Influent Vacum	<u> </u>	'
Blower Vacum	3 i "H2O	· .
Pre-GAC Pressure	PSI	
Mid-GAC Pressure	¢ PSI	
Post-GAC Pressure	<i>b</i> PSI	
Condensate Level	inches	
Condensate Drained	- gallons	
Bleed Valve Position	open/closed	
		* **
Sample Ports		
	PID (ppm) (Sampled	Analysis / Comments
Vertical Well Extraction Line	PAR D JUS	
Horizontal Well Extraction Line	0.0	
Pre-Gac	0.0	
Mid-GAC	0.0	
Post-GAC	0.0	
Repairs / Modifications / Communications		
		tin kaliforniusta (
	•	
· ·		

Date/Time:	Š	12-09	
Technician:		(FW	••• ·
System Operating: (Yes /	No)		-
System Parameters	٠,		
Influent Flow Meter	60	SCFM	
Influent Vacum	>-15	"H2O	
Blower Vacum	- 31	- "H2O	
Pre-GAC Pressure	0	PSI	
Mid-GAC Pressure	£,	PSI	
Post-GAC Pressure	0	PSI	
Condensate Level	••	inches	
Condensate Drained		gallons	
Bleed Valve Position		epen/closed	
		opp. wolcocu	4
Sample Ports	• a		
	PID (ppm)	Sampled	Analysis / Comments
Vertical Well Extraction Line		No	, way our commons
Horizontal Well Extraction Line	0.6		
Pre-Gac	0.7		
Mid-GAC	0.9		
Post-GAC	0.4		
		•	
Repairs / Modifications / Comn	nents		
Repairs / Modifications / Comn	nents		
Repairs / Modifications / Comm	lents		

Date/Time:	9	.9.09	· · · · · · · · · · · · · · · · · · ·
Technician:	· (-	THE	
System Operating: Yes	No)		
System Parameters			
Influent Flow Meter	60	SCFM	
Influent Vacum	7.15	"H2O	
Blower Vacum	32	_"H2O	
Pre-GAC Pressure	٥	PSI .	
Mid-GAC Pressure	O	PSI	ı
Post-GAC Pressure	Ę7	PSI	ŀ
Condensate Level	•	inches	i
Condensate Drained		gallons	1
Bleed Valve Position		open/closed	
Sample Ports			
	PID (ppm)	Sampled	
Vertical Well Extraction Line	_	No	
Horizontal Well Extraction Line	03	Ne	
D 0	1		

	רווט (ppm)	Sampled	Analysis / Comments
Vertical Well Extraction Line	_	No	ALA .
Horizontal Well Extraction Line	03	Ne	NA
Pre-Gac	0.	Ves	TG-15
Mid-GAC	0.2	i	
Post-GAC	0.1	4	

Repairs / Modifications / Comments

Verical Well (les 2)

Date/Time:	[0 - 1) - 04
Technician:	- Ali
System Operating: ((ves) /	No)
System Parameters	
Influent Flow Meter	60 SCFM
Influent Vacum	7-15 "H2O
Blower Vacum	32 "H2O
Pre-GAC Pressure	O PSI
Mid-GAC Pressure	C PSI
Post-GAC Pressure	D PSI
Condensate Level	inches
Condensate Drained	gallons
Bleed Valve Position	open/closed
Sample Ports	

	PID (ppm)	Sample	led Analysis / Comments
Vertical Well Extraction Line	_	NO	
Horizontal Well Extraction Line	001		
Pre-Gac	0.2		
Mid-GAC	0.7	. 1	
Post-GAC	0.1	\mathbb{V}	

Repairs / Modifications / Comments

Note: Ventral Sut (vell : 105 <)

Date/Time:	11-11-09	,		
Technician:		•		
System Operating: (Yes /	No)			
System Parameters				
Influent Flow Meter Influent Vacum Blower Vacum Pre-GAC Pressure Mid-GAC Pressure Post-GAC Pressure Condensate Level Condensate Drained Bleed Valve Position	G S SCFM - 30 "H20 - 33 "H20 - 981 - 981 - 981 - 981 - gallon - open/o	S		
Sample Ports	•			•
Vertical Well Extraction Line Horizontal Well Extraction Line Pre-Gac Mid-GAC Post-GAC	0.1	Sampled Vc	Analysis / Comi	nents
Repairs / Modifications / Comm	ents			
Note: Vertical SVEW STI PONCOSSES, Inc. SWE Systam While adds J.		stell autodia	Ler system c approx 1.5	Noith
			:	
,				

Date/Time:	12-29-09
Technician:	
System Operating: (Yes /	No)
System Parameters	North SVE System
Influent Flow Meter	₫₽ SCFM
Influent Vacum	>-15 "H2O
Blower Vacum	-32 "H2O
Pre-GAC Pressure	Ø PSI
Mid-GAC Pressure	0 PSI
Post-GAC Pressure	O PSI
Condensate Level	inches
Condensate Drained	gallons
Bleed Valve Position	open/closed

Sample Ports

	PID (ppm)	Sampled	Analysis / Comments
Vertical Well Extraction Line	-2-	NO	
Horizontal Well Extraction Line	· · · · · · · · ·	NO	
Pre-Gac	0 - v	105	10-15
Mid-GAC	త _ప ల్	No	10 . 19
Post-GAC	0.0	No	

Repairs / Modifications / Comments

Vert- SUE We	il closed						
Collected ic	Flight Supl	1/7	1	5620010		-	
- Collection	1000	~ (/	- P(+	20.7000	~) —		
	1	,				- · · · · · · · · · · · · · · · · · · ·	
							
· · · · · · · · · · · · · · · · · · ·	1	· · · · · · · · · · · · · · · · · · ·			····		
					······································		
	<u> </u>						
					·······		
				<u> </u>			
			·				
· · · · · · · · · · · · · · · · · · ·							
. \						•	
	1						······
		i					
		1 1					

Date/Time:	12-	29-09		
Technician:		W	<u>-</u>	
System Operating: ((ves)/	No)			
System Parameters	South?	SVE System		
Influent Flow Meter		SCFM 1	1	
Influent Vacum	-17			
Blower Vacum		"H2O		
Pre-GAC Pressure		PSI	·	
Mid-GAC Pressure		PSI		
Post-GAC Pressure	~~	PSI		
Condensate Level	6	inches		
Condensate Drained	~.5	gallons		
Bleed Valve Position		open/closed		
		open/closed=	1	
Sample Ports				
	PID (ppm) ,	Sampled	Analysis / Comments	
Vertical Well Extraction Line		200		
Horizontal Well Extraction Line		No		
Pre-Gac	0.0	ીવઇ		
Mid-GAC		Ŋι		
Post-GAC		No		
Repairs / Modifications / Comm	ente			الاستند
	CITES .			
Collected influent	Suple /	7 Mr. Somue		
Collector Williams	South C	2 W. Summa		
			<u> </u>	
		· · · · · · · · · · · · · · · · · · ·		
, , , , , , , , , , , , , , , , , , , ,				
	•			
				
		•		.
			,	
			}	
			,	·
			,	
			,	
			,	

APPENDIX B LABORATORY ANALYTICAL REPORTS

ANALYTICAL REPORT

Lab Number:

L0903022

Client:

P. W. Grosser

630 Johnson Avenue

Suité 7

Bohemia, NY 11716

ATTN:

Kris Almskog

Project Name:

FORMER COMPUTER CIRCUITS

Project Number:

TED0001

Report Date:

03/19/09

Certifications & Approvals: MA (M-MA030), NY (11627), CT (PH-0141), NH (2206), NJ (MA015), RI (LAO00299), ME (MA0030), PA (Registration #68-02089), LA NELAC (03090), FL NELAC (E87814), US Army Corps of Engineers.

320 Forbes Boulevard, Mansfield, MA 02048-1806 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.alphalab.com

Project Name: Project Number:

FORMER COMPUTER CIRCUITS

TED0001

Lab Number:

L0903022

Report Date:

03/19/09

Alpha Sample ID

Client ID AS-2

EFFLUENT :

L0903022-02 INFLUENT

L0903022-03 GAC MIDPOINT

L0903022-04

Sample Location 145 MARCU

145 MARCUS BLVD, HAPPAUG, NY 145 MARCUS BLVD, HAPPAUG, NY

145 MARCUS BLVD, HAPPAUG, NY

145 MARCUS BLVD, HAPPAUG, NY

Collection Date/Time

03/11/09 16:00

03/11/09 15:50

03/11/09 15:50

03/11/09 15:50

Project Name:

FORMER COMPUTER CIRCUITS

Project Number:

TED0001

Lab Number:

L0903022

Report Date:

03/19/09

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

TO15-LL

L0903022-01 and WG355898-4 Duplciate: The presence of Propylene could not be determined in this sample due to non-target compounds interfering with the identification and quantification of this compound. Sample was re-analyzed due to quality control failure on the original analysis. The results of the re-analysis are reported.

L0903022-02 has elevated detection limits due to the 1.598x dilution required by the elevated concentrations of target compounds in the sample.

The WG355748-2 LCS recovery for Hexachlorobutadiene are outside the 70%-130% acceptance limit. The LCS was within overall method allowances, therefore the analysis proceeded.

The WG355898-2 LCS recoveries for 1,2,4-Trichlorobenzene and Hexachlorobutadiene are outside the 70%-130% acceptance limit. The LCS was within overall method allowances, therefore the analysis proceeded. It

Project Name:

FORMER COMPUTER CIRCUITS

Lab Number:

L0903022

Project Number:

TED0001

Report Date:

03/19/09

Case Narrative (continued)

should be noted that Hexachlorobutadiene is above the 150% criteria. All samples associated with this LCS are non-detect for Hexachlorobutadiene, therefore results are reported.

TO15-SIM

L0903022-01 was re-analyzed due to quality control failure on the original analysis. The results of the re-analysis are reported.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Kathelin M. office

Title: Technical Director/Representative

Date: 03/19/09

AIR

03 1909 17.01

Project Name: FORMER COMPUTER CIRCUITS

Project Number: TED0001

Lab Number: Report Date:

L0903022 03/19/09

SAMPLE RESULTS

Lab ID:

L0903022-01 R

. Client ID:

AS-2

Sample Location:

145 MARCUS BLVD, HAPPAUG, NY

Matrix:

Anaytical Method:

Analytical Date:

48,TO-15 03/19/09 08:24

Analyst:

AJ

Air

Date Collected:

03/11/09 16:00

Date Received:

03/12/09

Field Prep:

	ppbV		ug/m3			Dilution
Parameter	Results	RDL	Results	RDL	Qualifier	Factor
Volatile Organics in Air (Low Level) - Ma	nsfield Lab					. •
1,1,1-Trichloroethane	ND	0.200	ND	1.09	•	.1
1,1,2,2-Tetrachloroethane	ND	0.200	, ND	1.37	•	1
1,1,2-Trichloroethane	ND	0.200	ND	1.09		1
,1-Dichloroethane	ND	0.200	ND	0.809		1
1,1-Dichloroethene	ND ·	0.200	ND	0.792		.1
1,2,4-Trichlorobenzene	ND	0.200	ND	1.48		1
,2,4-Trimethylbenzene	ND	0.200	ND	0.982		1
,2-Dibromoethane	ND	0.200	ND	1.54	•	, 1
,2-Dichlorobenzene .	ND	0.200	· ND	1.20		. 1
,2-Dichloroethane	ND	0.200	ND	0.809		1
,2-Dichloropropane	ND	0.200	ND	0.924		1
,3,5-Trimethybenzene	ND	0.200	. ND	0.982		. 1
,3-Butadiene	ND	0.200	ND	0.442	·	1
,3-Dichlorobenzene	ND	0.200	ND	1.20		1
,4-Dichlorobenzene	ND	0.200	ND	1.20		. 1
,4-Dioxane	ND	0.200	ND	0.720		, 1
2,2,4-Trimethylpentane	ND	0.200	ND	0.934		1
-Butanone	0.991	0.200	2.92	0.589		1
?-Hexanone	ND .	0.200	ND	0.819		, 1
-Chloropropene	ND	0.200	ND	0.626		1
-Ethyltoluene	ND	0.200	ND	0.982		1
cetone	12.7	0.500	30.2	1.19		1
Benzene	0.226	0.200	0.721	0.638		1
Benzyl chloride	ND	0.200	ND	1.03	· · · · · · · · · · · · · · · · · · ·	· 1
Bromodichloromethane	ND	0.200	ND	1.34		1

Project Name:

FORMER COMPUTER CIRCUITS

TED0001

Lab Number:

L0903022

Report Date:

03/19/09

SAMPLE RESULTS

Lab ID:

L0903022-01 R

Client ID:

Sample Location:

Project Number:

AS-2

145 MARCUS BLVD, HAPPAUG, NY

Date Collected:

03/11/09 16:00

Date Received: Field Prep:

03/12/09

	ppbV	ppbV		ug/m3		Dilution	
Parameter	Results	RDL	Results	RDL	Qualifier	Factor	
Volatile Organics in Air (Low Level) - I	Mansfield Lab		,	• • •			
Bromoform	ND	0.200	ND	2.06		1	
Bromomethane	ŅD	0.200	ND	0.776		1	ζ.
Carbon disulfide	0.681	0.200	2.12	0.622		1.	
Carbon tetrachloride	ND	0.200	ND	1.26		1 .	
Chlorobenzene	ND	0.200	ND :	0.920		· 1	
Chloroethane	ND	0.200	ND	0.527		1	
Chloroform	ND	.0.200	ND	0.976		1	`
Chloromethane	0.744	0.200	1.53	0.413		1	
cis-1,2-Dichloroethene	ND	0.200	ND	0.792		1	
cis-1,3-Dichloropropene	ND	0.200	ND .	0.907	,	1	
Cyclohexane	ND	0.200	ND	0.688		1	
Dibromochloromethane	ND	0.200	ND	1.70		1	
Dichlorodifluoromethane	0.535	0.200	2.64	0.988		+ 1	
Ethanol	79.1	2.50	149	4.71		1	
Ethyl Acetate	ND	0.500	· ND	1.80		1	
Ethylbenzene	· ND	0.200	ND	0.868		1,	
Freon-113	ND	0.200	ND	1.53	•	1	
Freon-114	ND	0.200	ND	1.40		1 1	
Hexachlorobutadiene	ND	0.200	ND	2.13		1	
Isopropanol	45.8	0.500	112	1.23	•	1	
Methylene chloride	0.855	0.500	2.97	1.74		1	
4-Methyl-2-pentanone	ND	0.200	ND	0.819		1	
Methyl tert butyl ether	ND	0.200	ND	0.720		1	
o/m-Xylene	ND	0.400	ND	1.74		1	
o-Xylene	ND	0.200	ND .	0.868	* .	1	
Heptane	0.356	0.200	1.46	0.819		1	
n-Hexane	ND .	0.200	ND	0.704		1 .	
Propylene	ND .	0.200	ND	0.344		1	
•			,				

Project Name: FORMER COMPUTER CIRCUITS

Project Number: TED0001 Lab Number:

L0903022

Report Date:

03/19/09

SAMPLE RESULTS

Lab ID:

L0903022-01 R

Client ID: Sample Location: AS-2

145 MARCUS BLVD, HAPPAUG, NY

Date Collected:

03/11/09 16:00

Date Received:

03/12/09

Field Prep:

ppbV		ug/m3		•	Dilution	
Results	RDL	Results	RDL	Qualifier	Factor	
Mansfield Lab	;			•.		
ND	0.200	ND	0.851	1.	1	
ND .	0.200	ND	. 1.36		. 1	
ND	0.200	, ND	0.589		. 1	
1.06	0.200	3.99	0.753	,	. 1 .	
ND	0.200	ND	0.792		1	
ND	0.200	ND	0.907		1	•
ND	0.200	ND .	1.07		1	. *
0.351	0.200	1.97	1.12		. 1	
ND	0.200	ND	0.704		1	
ND	0.200	ND	0.874		1	
ND	0.200	ND	0.511		1	
	Results Mansfield Lab ND ND ND 1.06 ND ND ND ND ND ND ND ND ND N	Results RDL Mansfield Lab ND 0.200 ND 0.200	Results RDL Results Mansfield Lab ND 0.200 ND ND 0.200 ND ND ND 0.200 ND ND 1.06 0.200 ND ND ND 0.200 ND ND ND 0.200 ND ND 0.351 0.200 ND ND ND 0.200 ND ND ND 0.200 ND ND	Results RDL Results RDL Mansfield Lab ND 0.200 ND 0.851 ND 0.200 ND 1.36 ND 0.200 ND 0.589 1.06 0.200 3.99 0.753 ND 0.200 ND 0.792 ND 0.200 ND 0.907 ND 0.200 ND 1.07 0.351 0.200 ND 1.12 ND 0.200 ND 0.704 ND 0.200 ND 0.874	Results RDL Results RDL Qualifier Mansfield Lab ND 0.200 ND 0.851 ND 0.200 ND 1.36 ND 0.200 ND 0.589 1.06 0.200 3.99 0.753 ND 0.200 ND 0.792 ND 0.200 ND 0.907 ND 0.200 ND 1.07 0.351 0.200 ND 0.704 ND 0.200 ND 0.704 ND 0.200 ND 0.874	Results RDL Results RDL Qualifier Factor Mansfield Lab ND 0.200 ND 0.851 1 ND 0.200 ND 1.36 1 ND 0.200 ND 0.589 1 1.06 0.200 3.99 0.753 1 ND 0.200 ND 0.792 1 ND 0.200 ND 0.907 1 ND 0.200 ND 1.07 1 0.351 0.200 ND 1.12 1 ND 0.200 ND 0.704 1 ND 0.200 ND 0.874 1

Project Name: FORMER COMPUTER CIRCUITS

Project Number: TED0001 Lab Number:

L0903022

Report Date:

03/19/09

SAMPLE RESULTS

Lab ID:

L0903022-01 R

Client ID:

AS-2

Sample Location:

145 MARCUS BLVD, HAPPAUG, NY

Matrix:

Air

Anaytical Method: Analytical Date:

48,TO-15-SIM 03/19/09 08:24

Analyst:

ÁJ

Date Collected:

03/11/09 16:00

Date Received:

03/12/09

Field Prep:

	ppbV		ug/m3			Dilution	
Parameter	Results	RDL	Results	RDL	Qualifier	Factor	
Volatile Organics in Air by SIM - Mar	nsfield Lab						_
Trichloroethene	0.078	0.020	0.419	0.107	•	1	

Project Name: FORMER COMPUTER CIRCUITS

Project Number: TED0001 Lab Number:

Report Date:

L0903022 03/19/09

SAMPLE RESULTS

Lab ID:

L0903022-02 D

Client ID:

INFLUENT

Sample Location:

145 MARCUS BLVD, HAPPAUG, NY

Matrix:

Soil_Vapor

Analytical Date:

Anaytical Method:

48,TO-15 03/17/09 19:17

Analyst:

AR

Date Collected:

03/11/09 15:50

Date Received:

03/12/09

Field Prep:

		ppbV		ug/m3	1	· ', '.	Dilution
Parameter	·	Results	RDL	Results	RDL	Qualifier	Factor
Volatile Organics in Air (Lo	ow Level) - Ma	nsfield Lab					
1,1,1-Trichloroethane	•	4.11	0.320	22.4	1.74		1.598
1,1,2,2-Tetrachloroethane		ND	0.320	ND	2.19	in the second second	1.598
1,1,2-Trichloroethane		ND	0.320	ND	1.74		1.598
1,1-Dichloroethane		1.76	0.320	7.14	1.29	e.	1.598
1,1-Dichloroethene		0.492	0.320	1.95	1.27		1.598
1,2,4-Trichlorobenzene		ND	0.320	ND	2.37		1.598
,2,4-Trimethylbenzene		ND	0.320	ND	1.57		1.598
,2-Dibromoethane		ND	0.320	ND	2.45	* * * * * * * * * * * * * * * * * * * *	1.598
,2-Dichlorobenzene	1.5	ND .	0.320	ND	1.92		1.598
,2-Dichloroethane		ND \	0.320	ND	1.29		1.598
2-Dichloropropane	to g	ND	0.320	ND	1.48		1.598
3,5-Trimethybenzene		ND	0.320	ND	1.57		1.598
3-Butadiene		ND	0.320	, ND	0.706		1.598
3-Dichlorobenzene	•	ND'	0.320	ND ND	1.92		1.598
4-Dichlorobenzene		ND	0.320	ND	1.92	*	1.598
4-Dioxane		ND ,	0.320	ND	1.15	1	1.598
2,4-Trimethylpentane	gets New Y	ND	0.320	ND	1.49		1.598
Butanone		0.655	0.320	1.93	0.942		1.598
Hexanone		N D	0.320	ND	1,31		1.598
Chloropropene		ND	0.320	ND	1.00		1.598
Ethyltoluene		ND .	0.320	ND .	1.57	· · · · · ·	1.598
cetone		7.52	0,799	17.8	1.90		1.598
enzene		ND	0:320	ND	1.02		1.598
enzyl chloride		ND	0.320	ŅD	1.65		1.598
romodichloromethane		ND	0.320	ND	2.14		1.598

Project Name:

FORMER COMPUTER CIRCUITS

Project Number:

TED0001

Lab Number:

L0903022

Report Date:

03/19/09

SAMPLE RESULTS

Lab ID:

L0903022-02 D

Client ID:

Sample Location:

INFLUENT

145 MARCUS BLVD, HAPPAUG, NY

Date Collected:

03/11/09 15:50

Date Received:

03/12/09

Field Prep:

	ppbV	ppbV		ug/m3		Dilution	
Parameter	Results	RDL	Results	RDL	Qualifier	Factor	
Volatile Organics in Air (Low Level) - I	Mansfield Lab						
Bromoform	ND	0.320	ND	3.30		1.598	
Bromomethane	ND	0.320	ND	1.24	. 1	1.598	
Carbon disulfide	ND	0.320	. ND	0.994		1.598	
Carbon tetrachloride	ND	0.320	ND	2.01		1.598	
Chlorobenzene	ND	0.320	ND	1.47		1.598	
Chloroethane	ND	0.320	ND	0.843		1.598	
Chloroform	0.524	0.320	2.55	1.56		1.598	
Chloromethane	0.335	0.320	0.691	0.659		1.598	
cis-1,2-Dichloroethene	1.46	0.320	5.79	1.27		1.598	
cis-1,3-Dichloropropene	ND	0.320	ND	1.45		1.598	
Cyclohexane	ND	0.320	NĎ	1.10		1.598	
Dibromochloromethane	ND	0.320	ND	2.72		1.598	
Dichlorodifluoromethane	0.580	0.320	2.86	1.58	•	1.598	
Ethanol	16.6	4.00	31.2	7.52		1.598	
Ethyl Acetate	ND	0.799	ND	2.88		1.598	
Ethylbenzene	ND	0.320	ND	1.39		1.598	
Freon-113	10.5	0.320	80.2	2.45	•	1.598	
Freon-114	ND	0.320	ND	2.23	•	1.598	
Hexachlorobutadiene	ND	0.320	ND	3.40	•	1.598	
sopropanol	13.8	0.799	33.8	1.96		1.598	
Methylene chloride	ND	0.799	ND.	2.77		1.598	
-Methyl-2-pentanone	ND '	0.320	ND	1.31	,	1.598	
flethyl tert butyl ether	ND	0.320	ND	1.15		1.598	
/m-Xylene	. ND	0.639	ND	2.77,		1.598	
-Xylene	ND	0.320	ND	1.39	•	1.598	
leptane	ND	0.320	ND	1.31		1.598	
n-Hexane	ND	0.320	ND	1.12	,	1.598	
Propylene	ND	0.320	, ND	0.550		1.598	

Project Name:

FORMER COMPUTER CIRCUITS

Lab Number:

L0903022

Project Number:

TED0001

Report Date:

03/19/09

SAMPLE RESULTS

Lab ID:

L0903022-02 D

Client ID:

INFLUENT

Sample Location: 145 MARCUS BLVD, HAPPAUG, NY

Date Collected:

03/11/09 15:50

Date Received:

03/12/09

Field Prep:

	ppbV		ug/m	3	Dilution
Parameter	Results	RDL	Results	RDL	Qualifier Factor
Volatile Organics in Air (Low Level) - I	Mansfield Lab			,	
Styrene	ND	0.320	ND	1.36	1.598
Tetrachloroethene	4.84	0.320	32.8	2.16	1.598
Tetrahydrofuran	ND	0.320	ND	0.942	1.598
Toluene	0.839	0.320	3.16	1.20	1.598
trans-1,2-Dichloroethene	ND	0.320	ND	1.27	1.598
trans-1,3-Dichloropropene	. ND	0.320	ND	1.45	1.598
Trichloroethene	87.6	0.320	470	1.72	1.598
Trichlorofluoromethane	0.463	0.320	2.60	1.79	1.598
Vinyl acetate	ND	0.320	ND	1.12	1.598
Vinyl bromide	ND	0.320	ND	1.40	1.598
Vinyl chloride	ND	0.320	ND	0.816	1.598
* *					

Project Name:

FORMER COMPUTER CIRCUITS

Project Number: TED0001

Lab Number:

L0903022

Report Date:

03/19/09

SAMPLE RESULTS

Lab ID:

L0903022-03

Client ID:

GAC MIDPOINT

Sample Location:

145 MARCUS BLVD, HAPPAUG, NY

Matrix:

Soil_Vapor

Anaytical Method: Analytical Date: 48,TO-15

Analyst:

03/17/09 18:38 AR Date Collected:

03/11/09 15:50

Date Received:

03/12/09

Field Prep:

	ppb\	ppbV		3	•	Dilution
Parameter	Results	RDL	Results	RDL	Qualifier	Factor
Volatile Organics in Air (Low Le	vel) - Mansfield Lab)				
1,1,1-Trichloroethane	19.4	0.200	106	1.09		1
1,1,2,2-Tetrachloroethane	, ND	0.200	ND	1.37		1
1,1,2-Trichloroethane	, ND	0.200	ND	1.09		1
,1-Dichloroethane	2.24	0.200	9.05	0.809		1
I,1-Dichloroethene	0.888	0.200	3.52	0.792		. 1
,2,4-Trichlorobenzene	ND	0.200	ND	1.48		1.
1,2,4-Trimethylbenzene	ND	0.200	ND	0.982		1
,2-Dibromoethane	ND	0.200	ND	1.54		1
,2-Dichlorobenzene	ND	0.200	ND	1.20		1 .
,2-Dichloroethane	ND	0.200	ND	0.809		1
,2-Dichloropropane	0.209	0.200	0.966	0.924		. 1
,3,5-Trimethybenzene	ND	0.200	ND .	0.982		. 1
,3-Butadiene	ND	0.200	ND	0.442		1
,3-Dichlorobenzene	ND	0.200	ND	1.20		1
,4-Dichlorobenzene	ND	0.200	ND	1.20		1
,4-Dioxane	ND	0.200	ND	0.720		⁶ 1
2,2,4-Trimethylpentane	· ND	0.200	ND	0.934		1
-Butanone	2.38	0.200	7.02	0.589		1
-Hexanone	ND	0.200	ND	0.819	•	1
-Chloropropene	ND	0.200	ND	0.626		1 1
-Ethyltoluene	ND -	0.200	ND	0.982		1
cetone	4.62	0.500	11.0	1.19		1
enzene	0.417	0.200	1.33	0.638		1
enzyl chloride	ND	0.200	ND	1.03		· 1
romodichloromethane	ND	0.200	ND	1.34		1

Project Name: FORMER COMPUTER CIRCUITS Project Number:

TED0001

Lab Number:

L0903022

Report Date: 03/19/09

SAMPLE RESULTS

Lab ID:

L0903022-03

Client ID:

GAC MIDPOINT

Sample Location:

145 MARCUS BLVD, HAPPAUG, NY

Date Collected:

Date Received: Field Prep:

03/11/09 15:50

03/12/09 Not Specified

	ppbV	ug	ı/m3	Dilution
Parameter	Results R	DL Results	RDL	Qualifier Factor
Volatile Organics in Air (Low Leve	l) - Mansfield Lab		•	
Bromoform	ND 0.	200 ND	2.06	1
Bromomethane	ND 0.	200 ND	0.776	, 1
Carbon disulfide	ND 0.	200 ND	0.622	1
Carbon tetrachloride	ND 0.	200 ND	1.26	1
Chlorobenzene	ND 0.	200 ND	0.920	1
Chloroethane	, ND 0.	200 ND	0.527	1 '
Chloroform	0.737 0.	200 3.60	0.976	· 1
Chloromethane	0.304 0.	200 0.627	0.413	· · · · · · · · · · · · · · · · · · ·
sis-1,2-Dichloroethene	2.16 0.	200 8.54	0.792	
is-1,3-Dichloropropene	ND 0.	200 ND	0.907	1
Cyclohexane	ND 0.	200 ND	0.688	· 1
Dibromochloromethane	ND 0.	200 ND	1.70	1
pichlorodifluoromethane	0.550 0.	200 2.72	0.988	· 1
thanol	10.0 2	.50 18.9	4.71	1
thyl Acetate	ND 0.	500 ND	1.80	1
thylbenzene	0.353 0.	200 1.53	0.868	. 1
reon-113	20.8 .0.	200 159	1.53	1
reon-114	ND 0.	200 ND	1.40	·. 1
lexachlorobutadiene	ND 0.	200 ND	2.13	1
sopropanol	9.76 0.8	500 24.0	1.23	1 .
lethylene chloride	1.56 0.8	5.40	1.74	1 ·
-Methyl-2-pentanone	ND 0.	200 ND	0.819	. 1
lethyl tert butyl ether	ND 0.	200 , ND	0.720	1
/m-Xylene	0.618 0.4	400 . 2.68	1.74	1
-Xylene	ND 0.2	200 • ND	0.868	. 1
eptane	0.361 0.2	200 1.48	0.819	1
-Hexane	0.796 0.2	200 2.80	0.704	1
ropylene	•	200 ND	0.344	1

Project Name: FORMER

FORMER COMPUTER CIRCUITS

TED0001

Lab Number:

L0903022

Report Date:

03/19/09

SAMPLE RESULTS

Lab ID:

L0903022-03

Client ID:

GAC MIDPOINT

Sample Location:

Project Number:

145 MARCUS BLVD, HAPPAUG, NY

Date Collected:

03/11/09 15:50

Date Received:

03/12/09

Field Prep:

	ppbV		ug/m3		•	Dilution
Parameter	Results	RDL	Results	RDL	Qualifier	Factor
Volatile Organics in Air (Low Level) - N	lansfield Lab					
Styrene	ND	0.200	ND	0.851		1 .
Tetrachloroethene	ND	0.200	ND	1.36		1 ,
Tetrahydrofuran	ND	0.200	ND	0.589.		1
Toluene	26.2	0.200	98.7	0.753		1 .
trans-1,2-Dichloroethene	0.342	0.200	1.35	0.792		1
trans-1,3-Dichloropropene	ND	0.200	ND	0.907		1.
Trichloroethene	30.6	0.200	164	1.07	• .	1
Trichlorofluoromethane	0.476	0.200	2.67	1.12		1
Vinyl acetate	ND	0.200	ND .	0.704		1
Vinyl bromide	ND	0.200	, ND	0.874	•	1
Vinyl chloride	ND	0.200	ND	0.511		1

Project Name: FORMER COMPUTER CIRCUITS

Project Number: TED0001

Lab Number:

L0903022

Report Date:

03/19/09

SAMPLE RESULTS

Lab ID:

L0903022-04

Client ID:

EFFLUENT

Sample Location:

145 MARCUS BLVD, HAPPAUG, NY

Matrix:

Soil_Vapor

Anaytical Method: Analytical Date: 48,TO-15 03/17/09 18:01

Analyst:

AR

Date Collected:

03/11/09 15:50

Date Received:

03/12/09

Field Prep:

•	ppbV	ppbV		ug/m3		Dilution	
Parameter	Results	RDL	Results	Results RDL		Factor	
Volatile Organics in Air (Low Lev	el) - Mansfield Lab						
1,1,1-Trichloroethane	16.3	0.200	88.8	1.09	,	1	
,1,2,2-Tetrachloroethane	ND	0.200	· ND	1.37	•	1	
,1,2-Trichloroethane	ND .	0.200	ND	1.09		1	
,1-Dichloroethane	1.40	0.200	5.65	0.809		1	
,1-Dichloroethene	0.628	0.200	2.49	0.792		1	
,2,4-Trichlorobenzene	ND	0.200	ND	1.48		1	
,2,4-Trimethylbenzene	ND	0.200	ND	0.982		1	
,2-Dibromoethane	ND	0.200	, ND	1.54	. \	1	
2-Dichlorobenzene	ND	0.200	ND	1.20		1	
2-Dichloroethane	ND	0.200	ND	0.809	•	1	
2-Dichloropropane	ND	0.200	ND -	0.924		, 1	
3,5-Trimethybenzene	ND	0.200	ND	0.982	,	1	
3-Butadiene	ND	0.200	ND	0.442	. ,	1	
3-Dichlorobenzene	ND.	0.200	ND	1.20		1	
4-Dichlorobenzene	ND	0.200	ND	1.20		1	
4-Dioxane	ND	0.200	ND	0.720		1	
2,4-Trimethylpentane	ND	0.200	ND	0.934		1	
Butanone	ND	0.200	ND	0.589		1.	
Hexanone	ND	0.200	ND	0.819		1	
-Chloropropene	ND	0.200	ND	0.626 /		1	
Ethyltoluene	ND	0.200	ND	0.982		1	
cetone	1.64	0.500	3.91	1.19		1.	
enzene	ND	0.200	ND	0.638		1	
enzyl chloride	ND .	0.200	ND	1.03		1	
romodichloromethane	ND	0.200	ND	1.34		1	

Project Name:

FORMER COMPUTER CIRCUITS

Project Number:

TED0001

Lab Number:

L0903022

Report Date:

03/19/09

SAMPLE RESULTS

Lab ID:

L0903022-04

Client ID:

Sample Location:

EFFLUENT

145 MARCUS BLVD, HAPPAUG, NY

Date Collected:

03/11/09 15:50

Date Received:

03/12/09

Field Prep:

	ppbV	ppbV		ug/m3		Dilution	
Parameter	Results	RDL	Results	RDL	Qualifier	Factor	
Volatile Organics in Air (Low Level) - I	Mansfield Lab						
Bromoform	ND .	0.200	NĎ	2.06		1	
Bromomethane	ND	0.200	ND	0.776		1	
Carbon disulfide	ND	0.200	ND	0.622		1	
Carbon tetrachloride	ND	0.200	ND.	1.26		1	
Chlorobenzene	ND	0.200	ND	0.920		1	
Chloroethane	, ND	0.200	· ND	0.527		.1	
Chloroform	1.79	0.200	8.72	0.976		1	
Chloromethane	0.305	0.200	0.629	0.413		1.	
cis-1,2-Dichloroethene	2.81	0.200	11.1	0.792	• .	1	
cis-1,3-Dichloropropene	ND	0.200	ND	0.907		1	
Cyclohexane	ND	0.200	ND	0.688		1	
Dibromochloromethane	ND	0.200	ND	1.70		1	
Dichlorodifluoromethane	0.552	0.200	2.73	0.988		1	
Ethanol	8.83	2.50	16.6	4.71		1	
Ethyl Acetate	ND	0.500	ND	1.80		1	
Ethylbenzene	, ND	0.200	ND	0.868		1	
Freon-113	45.6	0.200	349	1.53	•	1	
Freon-114	ND	0.200	ND	1.40		1	
Hexachlorobutadiene	ND	0.200	ND	2.13		1.	
Isopropanol	1.30	0.500	3.20	1.23	· ·		
Methylene chloride	0.594	0.500	2.06	1.74	,	1	
4-Methyl-2-pentanone	ND	0.200	ND	0.819	, ,	1	
Methyl tert butyl ether	ND	0.200	ND	0.720		1	
p/m-Xylene	ND	0.400	ND	1.74	•	1	
o-Xylene	ND	0.200	ND	0.868		1	
Heptane	ND	0.200	ND	0.819		1	
n-Hexane	ND .	0.200	ND	0.704			
Propylene	ND	0.200	ND	0.344		1	
			–			•	

03190917.01

Project Name:

FORMER COMPUTER CIRCUITS

Project Number:

TED0001

Lab Number:

L0903022

Report Date:

03/19/09

SAMPLE RESULTS

Lab ID:

L0903022-04

Client ID:

Sample Location:

EFFLUENT

145 MARCUS BLVD, HAPPAUG, NY

Date Collected:

03/11/09 15:50

Date Received: Field Prep:

03/12/09 Not Specified

·	ppbV		ug/m	3		Dilution	
Parameter	Results	RDL	Results	RDL	Qualifier	Factor	
Volatile Organics in Air (Low Level) - I	Mansfield Lab		,				
Styrene	ND	0.200	ND	0.851		· • 1	
Tetrachloroethene	2.17	0.200	14.7	1.36		. 1	
Tetrahydrofuran	ND	0.200	ND	,0.589		1	
Toluene	0.341	0.200	1.28	0.753		1 .	
trans-1,2-Dichloroethene	0.397	0.200	1.57	0.792	•	1 .	
trans-1,3-Dichloropropene	ND	0.200	ND	0.907		· . 1	
Trichloroethene	28.4	0.200	152	1.07		1 .	
Trichlorofluoromethane	0.371	0.200	2.08	1.12	•	1	
Vinyl acetate	ND	0.200	. ND	0.704	•	1	
Vinyl bromide	ND	0.200	ND	0.874		1	
Vinyl chloride	ND	0.200	ND	0.511		1	

Project Name: FORMER COMPUTER CIRCUITS

Project Number: TED0001

Lab Number:

L0903022

Report Date:

′03/19/09

Method Blank Analysis Batch Quality Control

Analytical Method:

48,TO-15

Analytical Date:

03/17/09 11:45

	ppbV		ug/m3		Dilution	
Parameter	Results	RDL	Results	RDL	Qualifier	Factor
Volatile Organics in Air (Low Level)	- Mansfield Lab	for sample(s):	02-04 Batch:	WG35	5748-3	
1,1,1-Trichloroethane	ND	0.200	ND	1.09		1
1,1,2,2-Tetrachloroethane	, ND.	0.200	NĎ	1.37		1
1,1,2-Trichloroethane	ND	0.200	ND	1.09		1
1,1-Dichloroethane	ND	0.200	ND	0.809		1
1,1-Dichloroethene	NÓ	0.200	ND	0.792		1
1,2,4-Trichlorobenzene	ND	0.200	. ND	1.48		. 1
,2,4-Trimethylbenzene	ND	0.200	, ND	0.982		1
,2-Dibromoethane	ND	0.200	ND	1.54		. 1
,2-Dichlorobenzene	ND	0.200	ND	1.20		1
,2-Dichloroethane	ND	0.200	ND	0.809		1
,2-Dichloropropane	ND	0.200	ND ·	0.924		1
,3,5-Trimethybenzene	ND	0.200	ND	0.982		1
,3-Butadiene	ND	0.200	· ND	0.442		1
,3-Dichlorobenzene	ND	0.200	ND	1.20		1
4-Dichlorobenzene	ND	0.200	ND	1.20		1
,4-Dioxane	ND	0.200	ND	0.720		1
,2,4-Trimethylpentane	ND	0.200	· ND	0.934		1
-Butanone	ND	0.200	ND	0.589		1
-Hexanone	ND	0.200	ND	0.819		1
-Chloropropene	ND	0.200	ND	0.626	•	. 1
Ethyltoluene	ND	0.200	ND	0.982		. 1
cetone	ND	0.500	ND	1.19	• **	· 1 .
enzene	ND.	0.200	ND	0.638		. 1
enzyl chloride	ND	0.200	ND	1.03		1
romodichloromethane	ND	0.200	ND	1.34		1

Project Name: FORMER COMPUTER CIRCUITS

Project Number: TED0001

Lab Number:

L0903022

Report Date: 03/19/09

Method Blank Analysis Batch Quality Control

Analytical Method:

48,TO-15

Analytical Date:

03/17/09 11:45

	ppbV		ug/m3		Dilution	
Parameter	Results	RDL	Results RDL	Qualifier	Factor	
Volatile Organics in Air (Low Level) - Ma	nsfield Lab	for sample	(s): 02-04 Batch: WG35	5748-3		
Bromoform	ND	0.200	ND 2.06		 1	
Bromomethane	ND	0.200	ND 0.776		. 1	
Carbon disulfide	ND	0.200	ND 0.622		1	
Carbon tetrachloride	ND	0.200	ND 1.26		. 1	
Chlorobenzene	ND	0.200	ND 0.920		1	
Chloroethane	ND	0.200	ND 0.527		1	
Chloroform	ND	0.200	ND 0.976		1	
Chloromethane	ND:	0.200	ND 0.413	•	1	
cis-1,2-Dichloroethene	ND	0.200	ND 0.792		শ	
sis-1,3-Dichloropropene	ND	0.200	ND 0.907		1	
Cyclohexane	ND	0:200	ND 0.688		1	
Dibromochloromethane	ND!	0.200	ND 1.70	* .	. 1	
Dichlorodifluoromethane	ND	0.200	ND 0.988		1	
thanol	ND	2.50	ND 4.71	1	1	
Ethyl Acetate	ND	0.500	ND , 1.80		1	
Ethylbenzene	NĎ.	0.200	ND 0.868		1	
reon-113	ND	0.200	ND 1.53		1.	
reon-114	ND	0.200	ND 1.40		1	
lexachlorobutadiene	ND	0!200	ND 2.13		1	
sopropanol	ND	0.500	ND 1.23		. 1	
fethylene chloride	ND	0.500	ND 1.74		1	
-Methyl-2-pentanone	ND	0.200	ND 0.819		1	
lethyl tert butyl ether	ND	0.200	ND 0.720	. •	1	
/m-Xylene	ND	0.400	ND 1.74		1	
-Xylene	ND	0.200	ND 0.868		1	

Project Name: FORMER COMPUTER CIRCUITS

Project Number: TED0001

Lab Number:

L0903022

Report Date:

03/19/09

Method Blank Analysis Batch Quality Control

Analytical Method:

48,TO-15

Analytical Date:

03/17/09 11:45

	ppbV	•	ug/m3			Dilution	
Parameter	Results	RDL	Results	RDL	Qualifier	Factor	
Volatile Organics in Air (Low Level) - Ma	ansfield Lab	for sample(s):	02-04 Batch:	WG355	748-3		
Heptane	ND	0.200	ND	0.819		1	
n-Hexane	ND	0.200	ND	0.704		. 1.	
Propylene	ND	0.200	ND	0.344		1	
Styrene	ND	0.200	ND	0.851		1	
Tetrachloroethene	ND	0.200	ND	1.36	•	1	
Tetrahydrofuran	, ND	0.200	ND	0.589	• .	1 .	
Toluene	ND	0.200	ND	0.753		1 .	
trans-1,2-Dichloroethene	ND,	0.200	ND	0.792		1	
trans-1,3-Dichloropropene	ND	0.200	ND	0.907		· · · 1	
Trichloroethene	. ND	0.200	ND	1.07		1	
Trichlorofluoromethane	ND	0.200	ND	1.12		1 .	
Vinyl acetate	ND.	0.200	ND	0.704	•	. 1	
Vinyl bromide	ND	0.200	ND	0.874	\(\frac{1}{2}\)	1	
Vinyl chloride	ND	0.200	ND	0.511		1	

Project Name: FORMER COMPUTER CIRCUITS

Project Number: TED0001

Lab Number:

L0903022

Report Date:

03/19/09

Method Blank Analysis Batch Quality Control

Analytical Method:

48,TO-15

Analytical Date:

		ppbV		ug/m3			
Parameter	·	Results	RDL	Results	RDL	Qualifier	Dilution Factor
Volatile Organics in Ai	r (Low Level) - M	ansfield Lab	for sample(s	s): 01 Batch: \	VG355898-	3	
1,1,1-Trichloroethane		ND	0.200	ND .	1.09		1
1,1,2,2-Tetrachloroethane	,	ND	0.200	ND	1.37		1
1,1,2-Trichloroethane		ND.	0.200	ND	1.09		1
,1-Dichloroethane		ND	0.200	ND -	0.809		. 1
,1-Dichloroethene		ND .	0.200	ND	0.792		.1
1,2,4-Trichlorobenzene		ND.	0.200	ND .	1.48		1
1,2,4-Trimethylbenzene		ND ·	0.200	· ND	0.982		1
,2-Dibromoethane	•	ND	0.200	ND ·	1.54		1
,2-Dichlorobenzene		ND	0.200	ND	1.20		1
,2-Dichloroethane		ND.	0.200	ND (0.809		1.
,2-Dichloropropane		ND,	0.200	ND	0.924		1
,3,5-Trimethybenzene		ND :	0.200	ND	0.982		1
,3-Butadiene		ND	0.200	ND	0.442		1
,3-Dichlorobenzene	•	ND	0.200	ND	1.20		, 1
,4-Dichlorobenzene		ND:	0.200	ND	1.20		. 1.
,4-Dioxane		ND	0.200	ND	0.720	,	1
,2,4-Trimethylpentane		ND .	0.200	ND	0.934		1
-Butanone	•	ND	0.200	ND	0.589		1
-Hexanone		ND .	0.200	ND	0.819		1
-Chloropropene	•	ND	0.200	ND	0.626		1
-Ethyltoluene	•	ND	0.200	ND	0.982		1
cetone		ND	0.500	ND .	1.19		1
enzene		ND	0.200	, ND	0.638		1
enzyl chloride		ND	0.200	ND	1.03		1
Bromodichloromethane		ND	0.200	ND	1.34		1

Project Name:

FORMER COMPUTER CIRCUITS

OTIVILITOOMI OTEIT

Project Number: TED0001

Lab Number: ,

L0903022

Report Date:

03/19/09

Method Blank Analysis Batch Quality Control

Analytical Method:

48,TO-15

Analytical Date:

	ppbV	<u> </u>	ug/m	3		Dilution
Parameter	Results	RDL	Results	RDL	Qualifier	Factor
Volatile Organics in Air (Low Level) - Ma	ansfield Lab	for sample(s):	01 Batch:	WG355898-3		
Bromoform	ND	0.200	ND	2.06		1
Bromomethane	ND	0.200	ND ·	0.776		1
Carbon disulfide	ND	0.200	ND	0.622	•	1 .
Carbon tetrachloride	ND,	0:200	ND	1.26		1 .
Chlorobenzene	ND	0.200	ND	0.920		. ,1
Chloroethane	ND	0.200	ND	0.527		1
Chloroform	ND	0.200	ND.	0.976		1
Chloromethane	ND	0.200	ND	0.413	,	1
sis-1,2-Dichloroethene	ND	0.200	ND	0.792		1
sis-1,3-Dichloropropene	ND	0.200	ND	0.907		1
Cyclohexane	ND	0.200	ND	0.688		. 1
Dibromochloromethane	ND	0.200	ND	1.70		1
Dichlorodifluoromethane	ND	0.200	ND	0.988		1
Ethanol	ND	2.50	ND	4.71		1
Ethyl Acetate	ND	0.500	ND	1.80		1
Ethylbenzene ,	ND	0.200	ND	0.868		1
reon-113	ND	0.200	, ND	1.53		1
reon-114	ND	0.200	ND	1.40		1
lexachlorobutadiene	ND	0.200	ND	2.13		1
sopropanol	ND	0.500	ND	1.23		1
Methylene chloride	ND	0.500	ND	1.74		1
-Methyl-2-pentanone	ND	0.200	ND :	0.819	•	,1
Methyl tert butyl ether	ND	0.200	ND	0.720	•	1
/m-Xylene	ND	0.400	ND	1.74		1 .
-Xylene	ND	0.200	ND	0.868		1

Project Name:

FORMER COMPUTER CIRCUITS

Project Number: TED0001

Lab Number:

L0903022

Report Date:

03/19/09

Method Blank Analysis Batch Quality Control

Analytical Method:

48,TO-15

Analytical Date:

	ppbV		ug/m3		•	Dilution
Parameter	Results	RDL	Results	RDL	Qualifier	Factor
Volatile Organics in Air (Low	Level) - Mansfield Lab	for sample	(s): 01 Batch: W	G355898	-3	
Heptane	. ND	0.200	ND	0.819		1
n-Hexane	, ND	0.200	ND	0.704		. 1
Propylene	ND	0.200	ND	0.344		1
Styrene	ND	0.200	ND	0.851		1
Tetrachloroethene	ND	→ .0.200	ND	1.36		. 1
Tetrahydrofuran	ND	0.200	ND	0.589		. 1
Toluene	ND	0.200	· ND	0.753		1
trans-1,2-Dichloroethene	ND	0.200	ND	0.792		1 .
trans-1,3-Dichloropropene	ND	0.200	ND	0.907		· 1
Trichloroethene	ND	0.200	ND	1.07		1 .
Trichlorofluoromethane	· ND	0.200	ND	1.12		1
Vinyl acetate	ND	0.200	ND	0.704		,1
Vinyl bromide	ND	0.200	ND	0.874		1
Vinyl chloride	ND	0.200	ND	0.511		1
						•

Project Name: FORMER COMPUTER CIRCUITS

Lab Number:

L0903022

Project Number: TED0001

Report Date:

03/19/09

Method Blank Analysis Batch Quality Control

Analytical Method:

48,TO-15-SIM

Analytical Date:

	рр	bV	ug/m3	ug/m3		Dilution
Parameter	Results	RDL	Results	RDL	Qualifier	Factor
Volatile Organics in Air by SIM -	Mansfield Lab fo	or sample(s):	01 Batch: WG	355903-3		
Trichloroethene	ND	0.020	ND	0.107		1

FORMER COMPUTER CIRCUITS

Project Number: TED0001

Project Name:

Lab Number:

L0903022

Report Date:

Parameter		.CS covery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Volatile Organics in Air (Low Level)	- Mansfield Lab	Associated sa	ample(s): 02-04	Batch: WG355748-2		
1,1,1-Trichloroethane		107	·	70-130	in the second	
1,1,2,2-Tetrachloroethane		109	-	70-130	•	
1,1,2-Trichloroethane		100	·	70-130	<u>.</u>	. -
1,1-Dichloroethane		100	· · · · · · · · · · · · · ·	70-130	· · · · ·	· · · · · · · · · · · · · · · · · · ·
1,1-Dichloroethene		100		70-130		
1,2,4-Trichlorobenzene	٠	104	- .	70-130		
1,2,4-Trimethylbenzene		106	<u>-</u>	70-130		
1,2-Dibromoethane		90		70-130	· . •	•
1,2-Dichlorobenzene		106	-	70-130	<u>.</u> .	
1,2-Dichloroethane	* .	103	-	70-130	- ·	
1,2-Dichloropropane	<i>:</i>	96		70-130	· •	
1,3,5-Trimethylbenzene		104	-	70-130	· •	
1,3-Butadiene		93	· •	70-130	•	\
1,3-Dichlorobenzene		102	· · · · · · · · · · · · · · · · · · ·	70-130	· · · · · · · · · · · · · · · · · · ·	
1,4-Dichlorobenzene	•	103		70-130		
1,4-Dioxane		112	· -	70-130	: -	
2,2,4-Trimethylpentane		98		70-130		
2-Butanone		115	·	70-130	- 1	
2-Hexanone		118	-	70-130	· •	
3-Chloropropene	•	90	-	70-130	V =	
4-Ethyltoluene		109		70-130	. <u>-</u>	

Project Name:

FORMER COMPUTER CIRCUITS

Project Number:

TED0001

Lab Number:

L0903022

Report Date:

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Volatile Organics in Air (Low Level) - Man	sfield Lab Associated	sample(s): 02-04 Batch	: WG355748-2		
Acetone	102	•	70-130	• .	• 1
Benzene	87	· · · · · · · · · · · · · · · · · · ·	70-130	÷.	
Benzyl chloride	104		70-130		
Bromodichloromethane	103	• • • • • • • • • • • • • • • • • • •	70-130		
Bromoform	106		70-130		•
Bromomethane	83	- · · · · · · · · · · · · · · · · · · ·	70-130		
Carbon disulfide	98	-	70-130	•	
Carbon tetrachloride	112	· · · · · · · · · · · · · · · · · · ·	70-130	·	
Chlorobenzene	106		70-130	· •	
Chloroethane	93		70-130	· <u>-</u>	
Chloroform	106	• • • • • • • • • • • • • • • • • • •	70-130	<u>-</u> •	
Chloromethane	98	- -	70-130	÷	
cis-1,2-Dichloroethene	101	•	70-130	· -	
cis-1,3-Dichloropropene	83	·	70-130	•	•
Cyclohexane	92	- · · · · · · · · · · · · · · · · · · ·	70-130	· ·	
Dibromochloromethane	105	•	70-130	• • •	
Dichlorodifluoromethane	103	•	70-130		
Ethyl Alcohol	100	•	70-130	<u>-</u>	
Ethyl Acetate	124	-	70-130	· -	
Ethylbenzene	109	•	70-130	- -	
1,1,2-Trichloro-1,2,2-Trifluoroethane	101		70-130	· · · · · · · ·	

Project Name:

FORMER COMPUTER CIRCUITS

Project Number:

TED0001

Lab Number:

L0903022

Report Date:

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RF	PD RPD Limits
Volatile Organics in Air (Low Level) - M	ansfield Lab Associated sar	nple(s): 02-04 Batcl	n: WG355748-2		•
1,2-Dichloro-1,1,2,2-tetrafluoroethane	98		70-130	٠.	
Hexachlorobutadiene	131	• • • • • • • • • • • • • • • • • • •	70-130		<u>.</u>
iso-Propyl Alcohol.	104	· · · · · · · · · · · · · · · · · · ·	70-130		en en de la servición de la companya
Methylene chloride	90		70-130		
4-Methyl-2-pentanone	114	·	70-130		
Methyl tert butyl ether	123	•	70-130		•
p/m-Xylene	113	. = '.	70-130		<u>.</u>
o-Xylene	115	- -	70-130	-	<u> </u>
Heptane	101	. .	70-130		•
n-Hexane	97		70-130		_
Propylene	. 88		70-130		-
Styrene	103	· · · · · · · · ·	70-130		•
Tetrachloroethene	108	= 1	70-130		<u>.</u>
Tetrahydrofuran	120	4	70-130		<u>.</u>
Toluene	107.	·	70-130		-
trans-1,2-Dichloroethene	96	-	70-130		•
trans-1,3-Dichloropropene	75	j .	70-130		•
Trichloroethene	100	• • • • • • • • • • • • • • • • • • •	70-130		
Trichlorofluoromethane	110		70-130		•
Vinyl acetate	126	· •	70-130		
Vinyl bromide	94	, -	70-130		<u>.</u>

Project Name:

FORMER COMPUTER CIRCUITS

Project Number:

TED0001

Lab Number:

L0903022

Report Date:

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Volatile Organics in Air (Low Level)	- Mansfield Lab Associated san	nple(s): 02-04 Batch:	WG355748-2		
Vinyl chloride	93	**************************************	70-130	-	

Volatile Organics in Air (Low Level) - Mansfield	Lab Assoc	ciated sample(s)	: 01	Batch:	WG355898-2
1,1,1-Trichloroethane	107				70-130
1,1,2,2-Tetrachloroethane	106		-		70-130
1,1,2-Trichloroethane	99		· -		70-130
1,1-Dichloroethane	107	•		•	70-130
1,1-Dichloroethene	102		-		70-130
1,2,4-Trichlorobenzene	131		-	•	70-130
1,2,4-Trimethylbenzene	111		-		70-130
1,2-Dibromoethane	. 92		-		70-130
1,2-Dichlorobenzene	108		-		[,] 70-130

Project Name:

FORMER COMPUTER CIRCUITS

Project Number:

TED0001

Lab Number:

L0903022

Report Date:

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Volatile Organics in Air (Low Level) - Man	sfield Lab Associated s	ample(s): 01 Batch:	WG355898-2		
1,2-Dichloroethane	119	· ·	` 70-130	•	
1,2-Dichloropropane	95	<i>2</i> -	70-130	-	
1,3,5-Trimethylbenzene	112	- -	70-130	•	
1,3-Butadiene	. 105	-	70-130	•	
1,3-Dichlorobenzene	108	- -	70-130	-	
1,4-Dichlorobenzene	108	<u>+</u>	70-130		
1,4-Dioxane	111	-	70-130	• . -	
2,2,4-Trimethylpentane	100	• •	70-130		
2-Butanone	111	-	70-130		·
2-Hexanone	105	•	70-130	<u>-</u>	
3-Chloropropene	101	· -	70-130		· · · · · · · · · · · · · · · · · · ·
4-Ethyltoluene	111	· -	70-130	-	
Acetone	92	<u>-</u>	70-130	• • • • • • • • • • • • • • • • • • •	
Benzene	95	· •	70-130	•	•
Benzyl chloride	103	-	70-130	-	
Bromodichloromethane	99	• • • • • • • • • • • • • • • • • • •	70-130		
Bromoform	102	·	70-130	-	•
Bromomethane	93	<u>.</u>	70-130		
Carbon disulfide	95	· •	70-130		•
Carbon tetrachloride	103		70-130		·
Chlorobenzene	99		70-130	e e e e e e e e e e e e e e e e e e e	

Project Name:

FORMER COMPUTER CIRCUITS

Project Number:

TED0001

Lab Number:

L0903022

Report Date:

Parameter	%F	LCS ecovery	%	LCSE Recov		%Recover	у	RPD	RPD Limits
Volatile Organics in Air (Low Level)	- Mansfield La	b Associate	ed sample(s):	01	Batch:	WG355898-2			
Chloroethane	•	103		.÷ -	••	70-130		-	•
Chloroform		113		-		70-130		-	
Chloromethane		105		-		70-130			
cis-1,2-Dichloroethene		109		-		70-130		· •	
cis-1,3-Dichloropropene		86		· -	•	70-130		• ·	
Cyclohexane	•	102		· -		70-130		-	
Dibromochloromethane		98		-		70-130	.*	-	
Dichlorodifluoromethane	•	114		· _ •		70-130		· <u>-</u> · .	·
Ethyl Alcohol		99		-		70-130	+ (
Ethyl Acetate		122	· .	, -		70-130		<u>-</u>	
Ethylbenzene		119				70-130	•	- ·	
1,1,2-Trichloro-1,2,2-Trifluoroethane		104		_		70-130		· -	
1,2-Dichloro-1,1,2,2-tetrafluoroethane		107				70-130			
Hexachlorobutadiene		152				70-130		-	
iso-Propyl Alcohol		99		_		70-130	٠.		
Methylene chloride		98		-		70-130	•	-	
4-Methyl-2-pentanone		105		-		70-130		-	
Methyl tert butyl ether		115	•			70-130		- -	
p/m-Xylene		112		-		70-130		- -	
o-Xylene	* **	108	•			70-130		- -	
Heptane		102		•		70-130			

Project Name:

FORMER COMPUTER CIRCUITS

Project Number:

TED0001

Lab Number:

L0903022

Report Date:

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Volatile Organics in Air (Low Level) -	Mansfield Lab Associated sam	ple(s): 01 Batch:	WG355898-2		X
n-Hexane	83	· · ·	70-130	-	
Propylene	118	<u>.</u> .	70-130		
Styrene	108	* · · · · · · · · · · · · · · · · · · ·	70-130		
Tetrachloroethene	108		70-130	<u>-</u>	
Tetrahydrofuran	124	· · · · · · · · ·	70-130		•
Toluene	99	• . • •	70-130		
trans-1,2-Dichloroethene	105	-	70-130	-	•
trans-1,3-Dichloropropene	74	-	70-130	. •	
Trichloroethene	102	-	70-130	•	
Trichlorofluoromethane	123	<u>.</u>	70-130		
Vinyl acetate	109	-	70-130	, -	
Vinyl bromide	98	•	70-130	±	
Vinyl chloride	106	•	70-130	· · · · · · · · · ·	
•	and the second s				

Project Name:

FORMER COMPUTER CIRCUITS

Project Number:

TED0001

Lab Number:

L0903022

Report Date:

Parameter	·	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits	
Volatile Organics in Air by SIM	- Mansfield Lab	Associated sample(s)	: 01 Batch: \	WG355903-2			
1,1,1-Trichloroethane		92	•	70-130	-	•	
1,1,1,2-Tetrachloroethane	•	85 ~	- .	70-130	•		
1,1,2,2-Tetrachloroethane		81	<u>-</u> .	. 70-130			
1,1,2-Trichloroethane	₹ <mark>*</mark> ;	81	•	70-130		e de la companya del companya de la companya del companya de la co	
1,1-Dichloroethane		90		70-130		```	
1,1-Dichloroethene	· · · · .	86	•	70-130			
1,2,4-Trimethylbenzene	,	88	• .	70-130			
1,2-Dibromoethane		, * 72		70-130			
1,2-Dichlorobenzene		80	-	70-130			
1,2-Dichloroethane	•	97 ,	-	70-130		•	
1,2-Dichloropropane	4.	81	•	70-130	-		
1,3,5-Trimethylbenzene		91	•	70-130			
1,3-Butadiene		90	<u>.</u>	70-130	· · · · · · · · · · · · · · · · · · ·	•	
1,3-Dichlorobenzene	·	81	•	70-130			
1,4-Dichlorobenzene		80	<u>.</u> .	70-130			
Benzene		78	1 14	70-130	•	•	
Bromodichloromethane		84	·	70-130	•		
Bromoform	•	78	· •	70-130			
Bromomethane	•	77	. '	70-130		•	
Carbon tetrachloride		92	-	70-130	-		
Chlorobenzene		83	-	70-130	•		•
		•		•			

Project Name:

FORMER COMPUTER CIRCUITS

Project Number:

TED0001

Lab Number:

L0903022

Report Date:

		•			
Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Volatile Organics in Air by SIM - Mansfield	Lab Associated sa	mple(s): 01 Batch: WG35	5903-2		•
Chloroethane	85	in the second se	70-130	: -	
Chloroform	· - 95	*.	70-130	• • • • • • • • • • • • • • • • • • •	
Chloromethane	89		70-130		•
cis-1,2-Dichloroethene	89		70-130		
cis-1,3-Dichloropropene	71		70-130		
Dibromochloromethane	76		70-130		
Dichlorodifluoromethane	97	- -	70-130	-	
Ethylbenzene	91		70-130		
1,1,2-Trichloro-1,2,2-Trifluoroethane	87	•	70-130	· · ·	
1,2-Dichloro-1,1,2,2-tetrafluoroethane	92		70-130		
Methylene chloride	83		70-130	· ·	
Methyl tert butyl ether	. 95	•	70-130	-	
p/m-Xylene	97	• • • • • • • • • • • • • • • • • • •	70-130	•	•
o-Xylene	96	· · · · · · · · · · · · · · · · · · ·	70-130	• •	•
Styrene	. 86	• •	70-130	-	-
Tetrachloroethene	85	-	70-130	•	
Toluene	82	• ,	70-130		
trans-1,2-Dichloroethene	87	÷ •	70-130	•	
trans-1,3-Dichloropropene	60	.•	70-130	- ·	
Trichloroethene	86	•	70-130	- -	
1,2,4-Trichlorobenzene	97	•	70-130	-	

FORMER COMPUTER CIRCUITS

Ba

Project Number: TED0001

Project Name:

Lab Number:

L0903022

Report Date:

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD .	RPD Limits
Volatile Organics in Air by SIM - Mansfield	Lab Associated sample(s)	: 01 Batch: WG3	55903-2	 ,	
Trichlorofluoromethane	98	-	70-130	 -	
Vinyl chloride	91	<u>.</u>	70-130	<u>-</u>	

FORMER COMPUTER CIRCUITS

Project Number: TED0001

Lab Duplicate Analysis Batch Quality Control

Lab Number:

L0903022

Report Date:

<u>Parameter</u>			Nat	ive Sample		Duplicate Sar	mple Uni	ts RPD	RPD Limits
Volatile Organics in Air Sample	(Low Level)	- Mansfield Lal	o Associate	d sample(s):	02-04	QC Batch ID:	WG355748-4	QC Sample: L0903144-	01 Client ID: DUP
1,1,1-Trichloroethane		•	-	ND		ND	ppb	V NC	25
1,1,2,2-Tetrachloroethane	e .	•		ŅD .		ND	ppb	V NC	25
1,1,2-Trichloroethane				ND		ND	ppb	V NC	. 25
1,1-Dichloroethane			* *	ND		ND	ppb	V NC	25
1,1-Dichloroethene				ND .	:	ND	ppb	V NC	25
1,2,4-Trichlorobenzene		٠.		ND		ND	ppb	V NC	25
1,2,4-Trimethylbenzene				ND		· ND	ppb'	V NC	25
1,2-Dibromoethane				ND		ND	ppb	V NC	25
1,2-Dichlorobenzene				ND		ND	ppb'	V NC	25 .
1,2-Dichloroethane	**			ND		ND	ppb'	V NC	25
1,2-Dichloropropane	•	•	•	ND		· ND	ppb'	V NC	25
1,3,5-Trimethybenzene				ND		ND	ppb'	V NC	25
1,3-Butadiene				ND		ND	ppb'	V NC	25
1,3-Dichlorobenzene	÷			ND	•	· ND	ppb)	V NC	25
1,4-Dichlorobenzene		. ·		ND -		ND	ppb)	V NC	25
1,4-Dioxane	*.	:		ND		ND	ppb)	/ NC	25
2,2,4-Trimethylpentane	•			ND		ND	ppb)	NC .	25
2-Butanone				0.626		0.637	ppb\	/ 2	25
2-Hexanone				ND ·		ND	ppb\	/ NC	25

FORMER COMPUTER CIRCUITS

Project Number:

TED0001

Lab Duplicate Analysis Batch Quality Control

trol Lab Number:

umber: L0903022

Report Date:

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
Volatile Organics in Air (Low Level) - Mansfield Lab Ass	sociated sample(s): 02-04			QC Sample: L0903144-01	
3-Chloropropene	ND	ND	ppbV	NC .	25
4-Ethyltoluene	ND	ND	ppbV	NC	25
Acetone	7.22	7.56	ppbV	5	25
Benzene	0.352	0.348	ppbV	.1	25
Benzyl chloride	ND	ND	ppbV	NC NC	25
Bromodichloromethane	ND	ND	ppbV	NC	25
Bromoform	ND	ND	ppbV	NC	. 25
Bromomethane	ND	ND	ppbV	NC NC	. 25
Carbon disulfide	ND	ND	ppbV	NC	25
Carbon tetrachloride	ND	ND	ppbV	NC	25
Chlorobenzene	ND	ND	ppbV	NC	25
Chloroethane	ND	ND	ppbV	NC	25
Chloroform	ND	. ND	ppbV	NC	25
Chloromethane	0.618	0.645	ppbV	4	25
cis-1,2-Dichloroethene	ND	ND	ppbV	NC	25
cis-1,3-Dichloropropene	ND	ND	ppbV	NC	25
Cyclohexane	ND	ND	ppbV	NC	25
Dibromochloromethane	ND	ND	ppbV	NC	25
Dichlorodifluoromethane	0.470	0.481	ppbV	2	25

FORMER COMPUTER CIRCUITS

Project Number: TED0001

Lab Duplicate Analysis Batch Quality Control

Lab Number:

L0903022

Report Date:

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
Volatile Organics in Air (Low Level) - Mansfield Lab As Sample	ssociated sample(s): 02-04	QC Batch ID: WG3	55748-4	QC Sample: L0903144-0	
Ethanol	17.2	17.7	ppbV	3	25
Ethyl Acetate	ND	ND	ppbV	NC	25
Ethylbenzene	ND	ND	ppbV	NC	25
Freon-113	ND.	ND	ppbV	€ NC	25
Freon-114	ND	ND .	ppbV	NC	25
Hexachlorobutadiene	ND	ND	ppbV	NC	25
Isopropanol	2.49	2.55	ppbV	2	25
Methylene chloride	ND	ND	ppbV	NC	25
4-Methyl-2-pentanone	ND	ND	ppbV	NC	25
Methyl tert butyl ether	ND	ND	ppbV	NC	25
p/m-Xylene	ND	ND	ppbV	NC	25
o-Xylene	ND	ND	ppbV	NC	25
Heptane	0.368	0.383	ppbV	4	25
n-Hexane	0.349	0.299	ppbV	15	25
~ Propylene	ND.	ND ·	ppbV	NC	25
Styrene	ND	ND	ppbV	NC NC	25
Tetrachloroethene	0.262	ND	ppbV	NC	25
Tetrahydrofuran	ND	ND	ppbV	NC	25
Toluene	1.22	1.23	ppbV	1	25

Project Name: FORMER COMPUTER CIRCUITS

Project Number:

TED0001

Lab Duplicate Analysis
Batch Quality Control

Lab Number:

L0903022

Report Date:

Parameter		Native Sample	Duplicate Sample	Units	RPD	RPD Limits
Volatile Organics in Air (Low Sample	Level) - Mansfield Lab	Associated sample(s): 02-04	QC Batch ID: WG3	55748-4 (QC Sample: L0903144-01	Client ID: DUP
trans-1,2-Dichloroethene		ND	ND	ppbV	NC	25 .
trans-1,3-Dichloropropene		ND	ND	ppbV .	NC .	25
Trichloroethene		ND	ND	ppbV	NC	25
Trichlorofluoromethane	en de la companya de La companya de la co	0.244	0.258	ppbV	6	25
Vinyl acetate		ND	ND	ppbV	NC	25
Vinyl bromide		ND	ND	ppbV	, NC	25
Vinyl chloride		ND	ND	ppbV	NC	- - 25 - ,

Project Name: Project Number: FORMER COMPUTER CIRCUITS

TED0001

Lab Duplicate Analysis Batch Quality Control

Lab Number:

L0903022

Report Date:

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
Volatile Organics in Air (Low Level) - Mansfield Lab As	ssociated sample(s): 01	QC Batch ID: WG35589	8-4 QC Sar	mple: L0903022-01	
1,1,1-Trichloroethane	ND	ND	ppbV	NC	25
1,1,2,2-Tetrachloroethane	ND	ND	ppbV	NC	25
1,1,2-Trichloroethane	ND	ND	ppbV	NC	25
1,1-Dichloroethane	ND	ND	ppbV	NC	25
1,1-Dichloroethene	ND	ND	ppbV	NC	25
1,2,4-Trichlorobenzene	ND e	ND.	ppbV	NC	25
1,2,4-Trimethylbenzene	ND	ND	ppbV	NC	25
1,2-Dibromoethane	ND	ND	ppbV	NC	25
1,2-Dichlorobenzene	` ND	ND	ppbV	NC	25
1,2-Dichloroethane	ND	ND ⁽	ppbV	NC.	25
1,2-Dichloropropane	ND	ND	ppbV	NC	25
1,3,5-Trimethybenzene	ND	ND	ppbV	NC	25
1,3-Butadiene	ND	ND	ppbV	NC	25
1,3-Dichlorobenzene	ND	ND	ppbV	NC	25
1,4-Dichlorobenzene	ND	ND	ppbV	NC	25
1,4-Dioxane	ND	ND	ppbV	NC	25
2,2,4-Trimethylpentane	ND	ND	ppbV	NC	25
2-Butanone	0.991	0.913	ppbV	8	25
2-Hexanone	ND :	ND	ppbV	NC	25

Lab Duplicate Analysis
Batch Quality Control

Lab Number:

L0903022

Report Date:

03/19/09

	_	
Project Name:	FORMER COMPUTER CIRCUITS	Batch

Project Number: TED0001

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
Volatile Organics in Air (Low Level) - Mansfield Lab As	ssociated sample(s): 01	QC Batch ID: WG355898	8-4 QC Sa	mple: L0903022-0	1 Client ID: AS-2
3-Chloropropene	ND	ND	ppbV	NC	25
4-Ethyltoluene	ND	ND	ppbV	NC	25
Acetone	12.7	- 11.7	ppbV	8	25
Benzene	0.226	0.219	ppbV	3	25
Benzyl chloride	ND	ND	ppbV	NC .	25
Bromodichloromethane	, ND	ND	ppbV	NC	25
Bromoform	ND	ND	ppbV	NC	25
Bromomethane	ND	ND	ppbV	NC ·	25
Carbon disulfide	0.681	ND	ppbV	NC	25
Carbon tetrachloride	ND	ND	ppbV	NC	25
Chlorobenzene	ND	ND	ppbV	NC	25
Chloroethane	ND	ND	ppbV	NC	25
Chloroform	ND	ND :	ppbV	NC	25
Chloromethane	0.744	0.705	ppbV	5	25
cis-1,2-Dichloroethene	ND	∼ ND	ppbV	NC	25
cis-1,3-Dichloropropene	ND	ND	ppbV	NC	25
Cyclohexane	ND	ND	ppbV	NC	
Dibromochloromethane	ND	ND	ppbV	NC	25
Dichlorodifluoromethane	0.535	0.522	ppbV	2	25

FORMER COMPUTER CIRCUITS

Project Number: TED0001

Lab Duplicate Analysis Batch Quality Control

Lab Number:

L0903022

Report Date:

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
Volatile Organics in Air (Low Level) - Mansfield L	_ab Associated sample(s): 01	QC Batch ID: WG35589	98-4 QC Sa	mple: L0903022-01	Client ID: AS-2
Ethanol	79.1	73.2	ppbV .	8	25
Ethyl Acetate	ND	ND	ppbV	NC	25
Ethylbenzene	ND	ND	ppbV	NC	25
Freon-113	ND	ND	ppbV	NC	25
Freon-114	. ND	ND	ppbV	NC	25
Hexachlorobutadiene	ND	, , , , , , , , , , , , , , , , , , ,	ppbV	NC	25
Isopropanol	45.8	44.7	ppbV	2	25
Methylene chloride	0.855	0.789	ppbV	8	25
4-Methyl-2-pentanone	ND	ND	ppbV	NC	25
Methyl tert butyl ether	ND .	ND	ppbV	NC	25
p/m-Xylene	ND	ND	ppbV	NC	25
o-Xylene	ND	ND	ppbV	NC	25
Heptane	0.356	0.389	ppbV	9 _ '	25
n-Hexane	ND .	ND	ppbV	NC	25
Propylene	ND	ND	ppbV	NC	25
Styrene	ND	ND	ppbV	NC	25
Tetrachloroethene	ND	ND	ppbV	NC	25
Tetrahydrofuran	ND	ND	ppbV	NC	25
Toluene	1.06	1.04	ppbV	2	25

Lab Duplicate Analysis

Lab Number:

L0903022

Report Date:

Project Name:	FORMER COMPUTER CIRCUITS	Batch Quality Control
Project Number:	TED0001	

	•	•			
Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
Volatile Organics in Air (Low Level) - Mansfield Lab Ass	ociated sample(s): 01	QC Batch ID: WG35589	8-4 QC Sample	e: L0903022-0	1 Client ID: AS-2
trans-1,2-Dichloroethene	ND	ND	ppbV	NC	25
trans-1,3-Dichloropropene	ND	ND	ppbV	NC	25
Trichloroethene	ND	ND	ppbV	NC	25
Trichlorofluoromethane	0.351	0.304	ppbV	14	25
Vinyl acetate	ND	ND	ppbV	NC	25
Vinyl bromide	ND	, ND	ppbV	NC	25
Vinyl chloride	ND	ND	ppbV	NC	25
Volatile Organics in Air by SIM - Mansfield Lab Associat	ed sample(s): 01 Q	C Batch ID: WG355903-4	QC Sample: L0	903101-01 Cli	ent ID: DUP Sample
Trichloroethene	ND	ND	ppbV	NC	25

Project Name: FORMER COMPUTER CIRCUITS

TED0001

Project Number:

Lab Number: L0903022

Report Date: 03/19/09

Canister and Flow Controller Information

Samplenum	Client ID	Media ID	Media Type	Cleaning Batch ID	Initial Pressure (in. Hg)	Pressure on Receipt (in. Hg)	Flow Out	Flow In mL/min	% RSD
L0903022-01	AS-2	0006	#16 AMB			-	4.8	4.5	6
L0903022-01	AS-2	108	2.7L Can	10902235	-29.6	-3.0 ·	-	-	
L0903022-02	INFLUENT	0230	#30 SV		· .	· - · · · · · · · · · · · · · · · · · ·	19.2	20.4	6
L0903022-02	INFLUENT	423	2.7L Can	10902407	-29.6	-3.0		-	• .
L0903022-03	GAC MIDPOINT	0304	#30 SV		-	-	19.6	21.0	7 ·
L0903022-03	GAC MIDPOINT	200	2.7L Can	10902235	-29.6	-3.5	-	-	- ,
L0903022-04	EFFLUENT	0077	#30 SV		ρ ⁴ =		19.1	21.3	11
L0903022-04	EFFLUENT	156	2.7L Can	10902235	-29.5	0.1	-	-	-

Project Name: FORMER COMPUTER CIRCUITS

Project Number: TED0001

Lab Number: L0903022

Report Date: 03/19/09

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Cooler

Custody Seal

N/A

Absent

Container Information

Container ID	Container Type		Cooler	рН	Temp	Pres	Seal	Analysis
L0903022-01A	Canister - 2.7 Liter	`	N/A	NA		NA	Absent	TO15-LL(30),TO15-SIM(30)
L0903022-02A	Canister - 2.7 Liter		N/A	NA	*	NA	Absent	TO15-LL(30)
L0903022-03A	Canister - 2.7 Liter		N/A	NA		NA	Absent	TO15-LL(30)
L0903022-04A	Canister - 2.7 Liter		N/A	NA	•	NA	Absent	TO15-LL(30)

FORMER COMPUTER CIRCUITS

Project Number:

TED0001

Lab Number:

L0903022

Report Date:

03/19/09

GLOSSARY

Acronyms

EPA

- Environmental Protection Agency.

LCS

Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD

· Laboratory Control Sample Duplicate: Refer to LCS.

MS

Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.

MSD

- Matrix Spike Sample Duplicate: Refer to MS.

NA

- Not Applicable.

NC

Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

ND

Not detected at the reported detection limit for the sample.

NI

· Not Ignitable.

RDL

Reported Detection Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD

Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- * The batch duplicate RPD exceeds the acceptance criteria. This flag is not applicable when the sample concentrations are less than 5x the RDL. (Metals only.)
- A Spectra identified as "Aldol Condensation Product".
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- N The matrix spike recovery exceeds the acceptance criteria. This flag is not applicable when the sample concentration is greater than 4x the spike added. (Metals only.)
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).

Report Format:

Data Usability Report

Project Name: Project Number:

FORMER COMPUTER CIRCUITS

Lab Number:

L0903022

TED0001

Report Date:

03/19/09

REFERENCES

48 Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air. Second Edition. EPA/625/R-96/010b, January 1999.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Woods Hole Labs shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Woods Hole Labs.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certificate/Approval Program Summary

Last revised February 18, 2009 - Mansfield Facility

The following list includes only those analytes/methods for which certification/approval is currently held. For a complete listing of analytes for the referenced methods, please contact your Alpha Customer Service Representative.

Connecticut Department of Public Health Certificate/Lab ID: PH-0141.

Wastewater/Non-Potable Water (Inorganic Parameters: pH, Turbidity, Conductivity, Alkalinity, Chloride, Fluoride, Sulfate, Sulfite, Nitrate, Nitrite, O-Phosphate, Total Phosphorus, Aluminum, Antimony, Arsenic, Barium, Beryllium, Boron, Cadmium, Calcium, Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Strontium, Thallium, Tin, Vanadium, Zinc, Total Residue (Solids), Total Dissolved Solids, Total Suspended Solids (non-filterable), Total Cyanide, Bromide.

Organic Parameters: PCBs, Organochlorine Pesticides, Technical Chlordane, Toxaphene, Acid Extractables, Benzidines, Phthalate Esters, Nitrosamines, Nitroaromatics & Isophorone, PAHs, Haloethers, Chlorinated Hydrocarbons, Volatile Organics.)

Solid Waste/Soil (Inorganic Parameters: pH, Aluminum, Antimony, Arsenic, Barium, Beryllium, Cadmium, Calcium, Chromium, Hexavalent Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Thallium, Vanadium, Zinc, Total Organic Carbon, Total Cyanide, Ignitability, Corrosivity, TCLP 1311, Reactivity. Organic Parameters: PCBs, Organochlorine Pesticides, Technical Chlordane, Toxaphene, Volatile Organics, Acid Extractables, Benzidines, Phthalates, Nitrosamines, Nitroaromatics & Cyclic Ketones, PAHs, Haloethers, Chlorinated Hydrocarbons.)

Florida Department of Health Certificate/Lab ID: E87814.

Non-Potable Water (<u>Inorganic Parameters</u>: SM2320B, 4500NH3-F, EPA 120.1, SM2510B, 2340B, EPA 245.1, EPA 365.2, EPA 150.1, 160.1, SM2540C, EPA 160.2, SM2540D, EPA 335.2, 420.1, SM2540G, EPA 180.1. <u>Organic Parameters</u>: EPA 624, 625, 608.)

Solid & Chemical Materials (Inorganic Parameters: 6020, 9050, 7470, 7471, 9045, EPA 7.3.3.2, EPA 7.3.4.2, 9014, 9065. Organic Parameters: EPA 8260, 8270, 8082, 8081.)

Air & Emissions (EPA TO-15.)

Louisiana Department of Environmental Quality Certificate/Lab ID: 03090.

Non-Potable Water (<u>Inorganic Parameters</u>: EPA 120.1, 150.1, 160.2, 180.1, 200.8, 245.1, 310.1, 335.2, 608, 625, 1631, 3010, 3015, 3020, 6020, 9010, 9014, 9040, SM2320B, 2510B, 2540D, 2540G, 4500CN-E, 4500H-B, <u>Organic Parameters</u>: EPA 3510, 3580, 3630, 3640, 3660, 3665, 5030, 8015 (mod), 3570, 8081, 8082, 8260, 8270,

Solid & Chemical Materials (Inorganic Parameters: 6020, 7196, 7470, 7471, 7474, 9010, 9014, 9040, 9045, 9060. Organic Parameters: EPA 8015 (mod), EPA 3570, 1311, 3050, 3051, 3060, 3580, 3630, 3640, 3660, 3665, 5035, 8081, 8082, 8260, 8270.)

Biological Tissue (Inorganic Parameters: EPA 6020. Organic Parameters: EPA 3570, 3510, 3610, 3630, 3640, 8270.)

Maine Department of Human Services Certificate/Lab ID: MA0030.

Wastewater (Inorganic Parameters: EPA 120.1, 300.0, SM 2320, 2510B, 2540C, 2540D, EPA 245.1. Organic Parameters: 608, 624.)

Massachusetts Department of Environmental Protection Certificate/Lab ID: M-MA030.

Non-Potable Water (Inorganic Parameters: SM4500H+B. Organic Parameters: EPA 624.)

New Hampshire Department of Environmental Services Certificate/Lab ID: 2206.

Non-Potable Water (Inorganic Parameters: EPA 200.8, 245.1, 1631E, 120.1, 150.1, 180.1, 310.1, 335.2, 160.2, SM2540D, 2540G, 4500CN-E, 4500H+B, 2320B, 2510B. Organic Parameters: EPA 625, 608.)

New Jersey Department of Environmental Protection Certificate/Lab ID: MA015.

Non-Potable Water (Inorganic Parameters: SW-846 3010, 3020A, 3015, 6020, SM2320B, EPA 200.8, SM2540C, 2540D, 2540G, EPA 120.1, SM2510B, EPA 180.1, 245.1, SW-846 9040B, 6020, 9010B, 9014 Organic Parameters: EPA 608, 625, SW-846 3510C, 3580A, 5030B, 3035L, 5035H, 3630C, 3640A, 3660B, 3665A, 8081A, 8082 8260B, 8270C)

Solid & Chemical Materials (Inorganic Parameters: SW-846 6020, 9010B, 9014, 1311, 3050B, 3051, 3060A, 7196A, 7470A, 7471A, 9045C, 9060. Organic Parameters: SW-846 3580A, 5030B, 3035L, 5035H, 3630C, 3640A, 3660B, 3665A, 8081A, 8082, 8260B, 8270C, 3570, 8015B.)

Atmospheric Organic Parameters (EPA TO-15)

New York Department of Health Certificate/Lab ID: 11627.

Non-Potable Water (Inorganic Parameters: EPA 310.1, SM2320B, EPA 365.2, 160.1, SM2540C, EPA 160.2, SM2540D, EPA 200.8, 6020, 1631E, 245.1, 335.2, 9014, 150.1, 9040B, 120.1, SM2510B, EPA 376.2, 180.1, 9010B. Organic Parameters: EPA 624, 8260B, 8270C, 608, 8081A, 625, 8082, 3510C, 3511, 5030B.)

Solid & Hazardous Waste (Inorganic Parameters: EPA 9040B, 9045C, SW-846 Ch7 Sec 7.3, EPA 6020, 7196A, 7471A, 7474, 9014, 9040B, 9045C, 9010B. Organic Parameters: EPA 8260B, 8270C, 8081A, DRO 8015B, 8082, 1311, 3050B, 3580, 3050B, 3035.)

Air & Emissions (EPA TO-15.)

Rhode Island Department of Health Certificate/Lab ID: LAO00299.

Refer to MA-DEP Certificate for Non-Potable Water.

Refer to LA-DEQ Certificate for Non-Potable Water.

Texas Commission of Environmental Quality Certificate/Lab ID: T104704419-08-TX.

Solid & Chemical Materials (Inorganic Parameters: EPA 6020, 7471. Organic Parameters: EPA 8015, 8270.)

Pennsylvania Department of Environmental Protection <u>Certificate/Lab ID</u>: 68-02089. Registered Laboratory. U.S. Army Corps of Engineers

ALPHA	CHAIN OF CUSTODY	Project	Informati	on			Repor	t Inform	ation -	Data <u>C</u>	Delive <u>ra</u>	bles		_			#: <i>L 0 9 0 3</i>	
0 Forbes Blvd, Man	sfield, MA 02048 FAX: 508-822-3288	Project Na	me: -	Con	fer Cire	cui te	D FAX	(,							nt info PO#:	
ient Information	FAX. 300-022-3200	Project Lo	cation: 14	5 Marcus	3101)	Happaye	ADE	Ex Criteria Che	ocker.					.			· · · · · · · · · · · · · · · · · · ·	-
ent: PWGC	-	Project #:	TED	0001		1 / 7		(d on Regu	latory Crit	eria Indicat	ed)	- -					
	Toknson Aue, ste 7	Project Ma	anager: 🙏	ins Alm	skus		}	other Form AIL (stand:		eport)	 :		-	Reç	gulat	ory F	Requirements/	Report Li
	, NY 11716	ALPHA Q	uote #:				ļ -	itional Del					_ [-	State	e/Fed	• -	Program	Criteria
	9-6353	Turn-A	ound Tin	ne			Report	to: (if different	than Project	Manager)			_			+		
x: -631 58°	9.8705-	Standar	d Q	RUSH (only co	onlirmed if pre-app	proved!)								· ==			· · · · · · · · · · · · · · · · · · ·	
nail: thomas m	@ puylosser.com	U10 DAYS			Time:									4	A۸	IALY /	'SIS	
These samples have	been previously analyzed by Alpha	Date Due	!: 		Time.		<u> </u>								/ /	/ /		•
ther Project Sp SI/	ecific Requirements/Comm	TEE								~	, ,		70.15	//		ĒS		-
	All C	olum	nńs E	Below	Mus	st Be	Fill	ed O	ut				200	SSIM		2 Z	\ode{\ode{\ode{\ode{\ode{\ode{\ode{	
LPHA Lab ID ab Use Only)	Sample ID	Date		End Time	Initial	Final Vacuum	Sample Matrix*	Sampler's Initials	Can Size	I D Can	I D • Flow Controller	70.1	70.15	APE SIM	FIXE	0,	Sample Com	ments (i.e.
022-1	A5-2	3-11-09		1600	-30	-5	AA	₩.	2.7L	108	0006		X					
2	Influent	3-11-09	1400	1550	-30	-5	5 _V	TM	2.7L	423	0230		X					
- 3	GAC M. Spoint	3-11-09	1400	1550	-30	-5	5V	TM	2.7L	200	0304		X					
- 4	Effluent	3-11-09	1400	1550	-30	- 2	≤V	TM	27L	156	0077		Y					
	CHILOTT	7																
			,											-				
						-												
	MATRIX CODES	AA = Ambier SV = Soil Va	por/Landfill	r/Outdoor) Gas/SVE	ļ	 		·c	ontainer	Туре	-		55	S			Please print clea completely. Sam	iples can not
*\$AMPLE		Other = Pleas	e Specify										1		1 1		logged in and tur	Haruuno nin

²age 50 of 50

ANALYTICAL REPORT

Lab Number:

L0908506

Client:

P. W. Grosser

630 Johnson Avenue

Suite 7

Bohemia, NY 11716

ATTN:

Kris Almskog

Project Name:

COMPUTER CIRCUITS

Project Number:

TED0001

Report Date:

07/01/09

Certifications & Approvals: MA (M-MA030), NY (11627), CT (PH-0141), NH (2206), NJ (MA015), RI (LAO00299), ME (MA0030), PA (Registration #68-02089), LA NELAC (03090), FL NELAC (E87814), US Army Corps of Engineers.

320 Forbes Boulevard, Mansfield, MA 02048-1806 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.alphalab.com

Project Name: COMPUTER CIRCUITS

Project Number: TED0001

Lab Number: Report Date:

L0908506 07/01/09

Sample Location **Alpha** Collection Sample ID Date/Time **Client ID** L0908506-01 AS-2 145 MARCUS BLVD 06/23/09 16:00 L0908506-02 INFLUENT 145 MARCUS BLVD 06/23/09 16:15 L0908506-03 **GAC MID POINT** 145 MARCUS BLVD 06/23/09 16:15 L0908506-04 **EFFLUENT** 145 MARCUS BLVD 06/23/09 16:15

Project Name:

COMPUTER CIRCUITS

Project Number:

TED0001

Lab Number:

L0908506

Report Date:

07/01/09

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet all of the requirements of NELAC, for all NELAC accredited parameters. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

For additional information, please contact Client Services at 800-624-9220.

Volatile Organics in Air (Low Level)

L0908506-03 and WG368683-5 have elevated detection limits due to the dilution required by the elevated concentrations of target compounds in the sample.

L0908506-03, WG368683-5 and -04 results for Acetone should be considered estimated due to co-elution with a non-target peak.

The WG368683-3 LCS recovery for Propylene (69%) is outside the 70%-130% acceptance limit. The LCS was within overall method allowances, therefore the analysis proceeded.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Kathle M. office

Title: Technical Director/Representative

Date: 07/01/09

AIR

Project Name: COMPUTER CIRCUITS

Project Number: TED0001

Lab Number:

L0908506

Report Date:

07/01/09

SAMPLE RESULTS

Lab ID:

L0908506-01

Client ID:

AS-2

Sample Location:

145 MARCUS BLVD

Matrix:

Air

Analytical Method: Analytical Date: 48,TO-15 06/27/09 01:10

Analyst:

RY

Date Collected:

06/23/09 16:00

Date Received:

06/24/09

Field Prep:

Not Specified

		**					
_	•	ppb\		ug/m			Dilution
Parameter		Results	RDL	Results	RDL	Qualifier	Factor
Volatile Organics in Air	(Low Level) - Ma	ansfield Lab)				
1,1,1-Trichloroethane		ND	0.200	ND	1.09		1
1,1,2,2-Tetrachloroethane		ND	0.200	ND	1.37	;	1
1,1,2-Trichloroethane		ND	0.200	ND	1.09		1
1,1-Dichloroethane		ND	0.200	. · ND	0.809		7 1 V
1,1-Dichloroethene		ND	0.200	ND	0.792	¥ .	• 1
1,2,4-Trichlorobenzene		ND	0.200	ND	1.48		1
1,2,4-Trimethylbenzene		ND	0.200	ND	0.982	:	1
1,2-Dibromoethane	•	ND	0.200	· ND	1.54		1
1,2-Dichlorobenzene		ND .	0.200	ND	1.20		1
1,2-Dichloroethane		ND.	0.200	ND .	0.809		1
1,2-Dichloropropane		ND	0.200	ND	0.924	•	1
1,3,5-Trimethybenzene		ND	0.200	ND .	0.982		1
1,3-Butadiene		ND	0.200	ND	. 0.442		1
1,3-Dichlorobenzene	. '	ND	0.200	ND	1.20		1
1,4-Dichlorobenzene		ND	0.200	,ND	1.20	•	1
1,4-Dioxane		ND	0.200	ND	0.720		1
2,2,4-Trimethylpentane		ND	0.200	ND	0.934		1
2-Butanone		1.17	0.200	3.44	0.589		1.1
2-Hexanone		ND	0.200	ND	0.819		1
3-Chloropropene		ND .	0.200	ND	0.626	÷	1
4-Ethyltoluene		ND .	0.200	ND	0.982	•	1
Acetone		26.1	0.500	62.1	1.19	. :	
Benzene	,	ND	0.200	ND	0.638		1
Benzyl chloride	•	· ND	0.200	ND	1.03		1
Bromodichloromethane		ND	0.200	ND .			•
		,	0.200	ND	1.34		. 1

Project Name: **COMPUTER CIRCUITS**

Project Number:

TED0001

Lab Number:

L0908506 07/01/09

Report Date:

SAMPLE RESULTS

Lab ID:

L0908506-01

Client ID:

Sample Location:

AS-2

145 MARCUS BLVD

Date Collected:

Date Received:

06/23/09 16:00

Field Prep:

06/24/09 Not Specified

V.	ppbV		ug/m	3		Dilution
Parameter	Results	RDL	Results	RDL	Qualifier	Factor
Volatile Organics in Air (Low Level) - M	lansfield Lab					
Bromoform	ND	0.200	ND ·	2.06		1
Bromomethane	ND	0.200	ND	0.776		1
Carbon disulfide	ND	0.200	ND	0.622		i
Carbon tetrachloride	ND	0.200	ND	1.26		. 1
Chlorobenzene	ND	0.200	ND	0.920		1 .
Chloroethane	ND	0.200	·. ND	0.527		1
Chloroform	ND	0.200	ND	0.976		1
Chloromethane	0.560	0.200	1.16	0.413		· 1
is-1,2-Dichloroethene	ND	0.200	ND	0.792		· 1
is-1,3-Dichloropropene	ND	0.200	ND	0.907		1
cyclohexane	· ND	0.200	ND	0.688		1
ibromochloromethane	ND	0.200	ND	1.70		1
ichlorodifluoromethane	0.589	0.200	2.91	0.988	•	1
thanol	38.8	2.50	73.2	4.71	·	1
thyl Acetate	1.73	0.500	6.23	1.80		1
thylbenzene	ND	0.200	ND	0.868	, .	1 -
reon-113	ND	0.200	ND	. 1.53		1
reon-114	ND	0.200	ND	1.40		1
lexachlorobutadiene	ND	0.200	ND	2.13	•	1
sopropanol	64.1	0.500	157	°1.23		1
lethylene chloride	1.66	0.500	5.76	1.74		· 1
-Methyl-2-pentanone	0.272	0.200	1.11	0.819		1 .
lethyl tert butyl ether	ND	0.200	ND	0.720		1
/m-Xylene	0.444	0.400	1.92	1.74		1 .
Xylene	ND	0.200	ND	0.868		1
eptane	6.32	0.200	25.9	0.819		1
-Hexane	ND	0.200	· ND	0.704		1
ropylene	ND	0.200	ND	0.344		1 .

Project Name: COMPUTER CIRCUITS

Project Number: TED0001 Lab Number:

L0908506

Report Date:

07/01/09

SAMPLE RESULTS

Lab ID:

L0908506-01

Client ID:

AS-2

Sample Location:

145 MARCUS BLVD

Date Collected:

06/23/09 16:00

Date Received:

06/24/09

Field Prep:

Not Specified

.ppbV	<u> </u>	ug/m	3		Dilution	
Results	RDL	Results	RDL	Qualifier	Factor	
Mansfield Lab						
ND	0.200	ND .	0.851		1	
ND	0.200	, ND	1.36	* * * * * * * * * * * * * * * * * * * *	1	
0.465	0.200	1.37	0.589		1	
1.29	0.200	4.84	0.753		1	
ND	0.200	ND	0.792		1	
ND	0.200	ND	0.907	•	. 1	
ND	0.200	ND	1.07		1	
0.431	0.200	2.42	1.12		1	
ND	0.200	ND	0.704		1	
ND	0.200	ND	0.874		1	
ND	0.200	ND	0.511	•	. 1	
	Results Mansfield Lab ND ND 0.465 1.29 ND ND ND ND ND ND ND ND ND N	Results RDL Mansfield Lab ND 0.200 ND 0.200 0.465 0.200 1.29 0.200 ND 0.200 ND 0.200 ND 0.200 0.431 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200	Results RDL Results Mansfield Lab ND 0.200 ND ND 0.200 ND ND 0.465 0.200 1.37 1.29 0.200 4.84 ND 0.200 ND ND ND ND ND 0.200 ND ND 0.431 0.200 ND ND 0.200 ND ND ND ND ND ND 0.200 ND ND ND ND	Results RDL Results RDL Mansfield Lab ND 0.200 ND 0.851 ND 0.200 ND 1.36 0.465 0.200 1.37 0.589 1.29 0.200 4.84 0.753 ND 0.200 ND 0.792 ND 0.200 ND 0.907 ND 0.200 ND 1.07 0.431 0.200 2.42 1.12 ND 0.200 ND 0.704' ND 0.200 ND 0.704' ND 0.200 ND 0.874	Results RDL Results RDL Qualifier Mansfield Lab ND 0.200 ND 0.851 ND 0.200 ND 1.36 0.465 0.200 1.37 0.589 1.29 0.200 4.84 0.753 ND 0.200 ND 0.792 ND 0.200 ND 0.907 ND 0.200 ND 1.07 0.431 0.200 2.42 1.12 ND 0.200 ND 0.704² ND 0.200 ND 0.874	

Project Name: COMPUTER CIRCUITS

Project Number: TED0001 Lab Number:

L0908506

Report Date:

07/01/09

SAMPLE RESULTS

Lab ID:

L0908506-01

Client ID:

AS-2

Sample Location:

145 MARCUS BLVD

Matrix:

Air

Anaytical Method: Analytical Date:

48,TO-15-SIM 06/27/09 18:54

Analyst:

AJ

Date Collected:

06/23/09 16:00 06/24/09

Date Received:

Field Prep:

Not Specified

	Parameter		ppbV			ug/m	3		Dilution	
Parameter			Results	RDL		Results	RDL	Qualifier	Factor	
Volatile Orga	anics in Air b	y SIM - Man	sfield Lab		٠,				•	
Trichloroethene			0.069	0.020		0.368	0.107		1	

Project Name: COMPUTER CIRCUITS

Project Number: TED0001

Lab Number:

L0908506

Report Date:

07/01/09

SAMPLE RESULTS

Lab ID:

L0908506-02

Client ID: Sample Location: INFLUENT

Matrix:

145 MARCUS BLVD Soil_Vapor

Anaytical Method:

Soil_Vapor 48,TO-15

Analytical Date:

06/27/09 01:45

Analyst:

RY

Date Collected:

06/23/09 16:15

Date Received:

06/24/09

Field Prep: Not Specified

	ppbV		ug/m	3		Dilution	
Parameter	Results	RDL	Results	RDL	Qualifier	Factor	
Volatile Organics in Air (Low Level)	- Mansfield Lab						
1,1,1-Trichloroethane	5.67	0.200	30.9	1.09	***	1	
1,1,2,2-Tetrachloroethane	ND .	0.200	ND	1.37		· 1	
1,1,2-Trichloroethane	· ND	0.200	ND	1.09	* *	1 .	
1,1-Dichloroethane	2.16	0.200	8.73	0.809		1	
1,1-Dichloroethene	0.553	0.200	2.19	0.792		. 1	
1,2,4-Trichlorobenzene	ND	0.200	ND	1.48		1	
1,2,4-Trimethylbenzene	ND	0.200	ND	0.982		. 1	
1,2-Dibromoethane	ND	0.200	. ND	1.54		1 .	
1,2-Dichlorobenzene	ý ŃD	0.200	: ND	1.20		1	
1,2-Dichloroethane	ND	0.200	ND	0.809		1	
,2-Dichloropropane	ND	0.200	ND	0.924		1	
1,3,5-Trimethybenzene	ND	0.200	. ND	0.982	•	1	
,3-Butadiene	, ND	0.200	ND	0.442		, 1	
,3-Dichlorobenzene	ND	0.200	ND	1.20		1	
1,4-Dichlorobenzene	ND	0.200	ND	1.20		1	
I,4-Dioxane	1.89	0.200	6.82	0.720		. 1	
2,2,4-Trimethylpentane	ND	0.200	ND	0.934		1 ·	
2-Butanone	0.545	0.200	1.61	0.589		1	
?-Hexanone	ND .	0.200	ND	0.819		1	
3-Chloropropene	ND	0.200	, ND	0.626		1	
-Ethyltoluene	ND	0.200	· ND	0.982		1	
cetone	10.5	0.500	24.8	1.19		1	
Benzene	ND	0.200	ND	0.638	`; '	1	
Benzyl chloride	ND	0.200	ND	1.03		1	
Bromodichloromethane	ND	0.200	ND	1.34		1	

Project Name: COMPUTER CIRCUITS

Project Number: TED0001

Lab Number:

L0908506

Report Date: 07/01/09

SAMPLE RESULTS

Lab ID: Client ID: L0908506-02

Sample Location:

INFLUENT 145 MARCUS BLVD Date Collected:

06/23/09 16:15

Date Received: Field Prep:

06/24/09 Not Specified

Parameter Volatile Organics in Air (Low Level) - N	Results Iansfield Lab	RDL	Results	RDL		Dilution
Volatile Organics in Air (Low Level) - N	fansfield Lab			NUL	Qualifier	Factor
		· .				
Bromoform	· ND	0.200	ND	2.06		1
Bromomethane	ND	0.200	ND	0.776		1
Carbon disulfide	ND	0.200	ND	0.622		1
Carbon tetrachloride	ND	0.200	ND	1.26	4,	1
Chlorobenzene	ND	0.200	ND	0.920		1
Chloroethane	· ND	0.200	ND	0.527	•	1
Chloroform	0.481	0.200	2.34	0.976	4	1
Chloromethane	. 0.237	0.200	0.489	0.413	•	1
cis-1,2-Dichloroethene	3.17	0.200	12.5	0.792		1
cis-1,3-Dichloropropene	ND	0.200	ND	0.907		1
Cyclohexane	ND	0.200	ND -	0.688		1
Dibromochloromethane	ND	0.200	· ND	1.70		1
Dichlorodifluoromethane	0.551	0.200	2.72	0.988		1 .
- Ethanol	10.2	2.50	19.2	4.71		1
Ethyl Acetate	ND	0.500	ND	1.80		1
Ethylbenzene	ND	0.200	ND.	0.868	. *	1
Freon-113	3.92	0.200	30.0	1.53		1
Freon-114	ND	0.200	ND	1.40		• 1
Hexachlorobutadiene	ND	0.200	, ND	2.13		1
sopropanol	20.1	0.500	49.3	1.23		1
Methylene chloride	0.919	0.500	3.19	1.74		1 .
1-Methyl-2-pentanone	ND	0.200	ND	0.819	•	.1 .
Methyl tert butyl ether	ND	0.200	ND	0.720		1
o/m-Xylene	ND	0.400	ND	1.74		1
o-Xylene	ND	0.200	ND	0.868		1.
Heptane	1.78	0.200	7.31	0.819	*	1
n-Hexane	ŃÓ	0.200	ND	0.704		1
Propylene Propylene	ND .	0.200	ND	0.344		1

Project Name: COMPUTER CIRCUITS

Project Number: TED0001

Lab Number:

L0908506

Report Date:

07/01/09

SAMPLE RESULTS

Lab ID:

L0908506-02

Client ID: Sample Location: INFLUENT 145 MARCUS BLVD Date Collected:

06/23/09 16:15

Date Received:

06/24/09 Not Specified

Field Prep:

	ppb\	<u>/</u>	ug/m	3		Dilution	
Parameter	Results	RDL	Results	RDL	Qualifier	Factor	
Volatile Organics in Air (Low Level) -	Mansfield Lab)					-
Styrene	ND	0.200	ND	0.851		1	
Tetrachloroethene	5.64	0.200	38.2	1.36		1 '	
Tetrahydrofuran	0.252	0.200	0.742	0.589		1	
Toluene	0.405	0.200	1.52	0.753		1	
trans-1,2-Dichloroethene	0.567	0.200	2.25	0.792		1	
trans-1,3-Dichloropropene	ND	0.200	ND	0.907	•	1	
Trichloroethene	81.8	0.200	439	1.07		1	
Trichlorofluoromethane	0.449	0.200	2.52	1.12		1 1	
Vinyl acetate	ND .	0.200	, ND	0.704		1	
Vinyl bromide	ND	0.200	ND	0.874		1 .	
Vinyl chloride	ND	0.200	ND	0.511		1	
			•				

Project Name: COMPUTER CIRCUITS

Project Number: TED0001

Lab Number:

L0908506

Report Date:

07/01/09

SAMPLE RESULTS

Lab ID: Client ID: L0908506-03 D GAC MID POINT

Sample Location:

145 MARCUS BLVD

Matrix:

Soil_Vapor

Anaytical Method: Analytical Date: 48,TO-15 06/27/09 02:17

Analyst:

RY

Date Collected:

06/23/09 16:15

Date Received:

06/24/09

Field Prep:

Not Specified

	ppbV		ug/m3	3		Dilution
Parameter	Results	RDL	Results	RDL	Qualifier	Factor
Volatile Organics in Air (Low Level) - N	/lansfield Lab			•		
1,1,1-Trichloroethane	22.7	0.500	124	2.72		2.5
1,1,2,2-Tetrachloroethane	ND	0.500	ND	3.43		2.5
1,1,2-Trichloroethane	ND	0.500	ND	2.72		2.5
1,1-Dichloroethane	2.50	0.500	10.1	2.02		2.5
1,1-Dichloroethene	1.02	0.500	4.04	1.98		2.5
1,2,4-Trichlorobenzene	ND	0.500	ND	3.71		2.5
1,2,4-Trimethylbenzene	ND	0.500	ND	2.46	•	2.5 .
1,2-Dibromoethane	ND	0:500	ND	3.84		2.5
,2-Dichlorobenzene	ND	0.500	ND	3.00	•	2.5
,2-Dichloroethane	ND	0.500	ND	2.02		2.5
,2-Dichloropropane	ND	0.500	ND	2.31		2.5
,3,5-Trimethybenzene	ND	0.500	ND	2.46		2.5
,3-Butadiene	' ND	0.500	ND	1.10		2.5
,3-Dichlorobenzene	ND	0.500	ND	3.00		2.5
,4-Dichlorobenzene	ND	0.500	ND	3.00	•	2.5
,4-Dioxane	ND	0.500	ND :	1.80		2.5
2,2,4-Trimethylpentane	ND .	0.500	ND	2.33		2.5
-Butanone	ND	0.500	ND	1.47		2.5
2-Hexanone	ND	0.500	ND	2.05		2.5
3-Chloropropene	ND .	0.500	ND	1.56		2.5
-Ethyltoluene	ND .	0.500	ND	2.46		2.5
cetone	8.37	1.25	19.9	2.97		2.5
Benzene	ND	0.500	ND	1.60		2.5
Benzyl chloride	ND	0.500	ND	2.59		2.5
Bromodichloromethane	ND ·	0.500	ND	3.35	•	2.5

Project Name: COMPUTER CIRCUITS

Project Number: TED0001 Lab Number:

L0908506 07/01/09

Report Date:

SAMPLE RESULTS

Lab ID: Client ID: L0908506-03 D

GAC MID POINT Sample Location: 145 MARCUS BLVD Date Collected:

06/23/09 16:15

Date Received: Field Prep:

06/24/09 Not Specified

	ppbV	100	ug/m	3 •		Dilution	
Parameter	Results	RDL	Results	RDL	Qualifier	Factor	
Volatile Organics in Air (Low Le	vel) - Mansfield Lab		•				
Bromoform	ND	0.500	ND	5.16		2.5	
Bromomethane	ND	0.500	ND	1.94		2.5	
Carbon disulfide	ND	0.500	ND	1.56		2.5	
Carbon tetrachloride	ND	0.500	ND	3.14		, 2.5	
Chlorobenzene	ND	0.500	ND	2.30	•	2.5	
Chloroethane	ND	0.500	ND	1.32	٠	2.5	
Chloroform	0.825	0.500	4.03	2.44		2.5	
Chloromethane	ND	0.500	ND	1.03		2.5	
cis-1,2-Dichloroethene	3.79	0.500	15.0	1.98		2.5	
cis-1,3-Dichloropropene	ND	0.500	ND	2.27		2.5	
Cyclohexane	ND	0.500	ND	1.72		2.5	
Dibromochloromethane	. ND	0.500	ND	4.26		2.5	
Dichlorodifluoromethane	0.642	0.500	3.17	2.47		2.5	
Ethanol	9.99	6.25	18.8	11.8	,	2.5	
Ethyl Acetate	ND	1.25	ND	4.50		, 2.5	
Ethylbenzene	ND	0.500	ND	2.17		2.5	
Freon-113	21.1	0.500	161	3.83		2.5	
Freon-114	ND:	0.500	ND	3.49		2.5	
dexachlorobutadiene	ND	0.500	ND	5.33		2.5	
sopropanol	21.3	1.25	52.2	3.07		2.5	
Methylene chloride	ND	1.25	ND	4.34	•	2.5	
1-Methyl-2-pentanone	ND	0.500	ND	2.05		2.5	
Methyl tert butyl ether	ND	0.500	ND	1.80		2.5	
/m-Xylene	ND	1.00	ND	4.34		2.5	
-Xylene	ND	0.500	ND	2.17		2.5	
leptane	ND	0.500	; ND	2.05		2.5	
n-Hexane	ND	0.500	ND	1.76		2.5	
Propylene	ND	0.500	ND	0.860		2.5	

Project Name: COMPUTER CIRCUITS

Project Number: TED0001

Lab Number:

L0908506

Report Date:

07/01/09

SAMPLE RESULTS

Lab ID:

L0908506-03 D

Client ID:

GAC MID POINT

Sample Location:

145 MARCUS BLVD

Date Collected:

06/23/09 16:15

Date Received:

06/24/09

Field Prep:

Not Specified

	ppbV	· •	ug/m	3		Dilution	
Parameter	Results	RDL	Results	RDL	Qualifier	Factor	
Volatile Organics in Air (Low Level)	- Mansfield Lab						
Styrene	ND .	0.500	ND	2.13		2.5	
Tetrachloroethene	ND	0.500	ND	3.39	: :	2.5	
Tetrahydrofuran	ND	0.500	ND	1.47		2.5	
Toluene	ND .	0.500	ND	1.88		2.5	• •
trans-1,2-Dichloroethene	0.540	0.500	2.14	1.98		2.5	
trans-1,3-Dichloropropene	ND	0.500	ND	2.27		2.5	
Trichloroethene	205	0.500	1100	2.68		2.5	
Trichlorofluoromethane	0.524	0.500	2.94	2.81		2.5	
Vinyl acetate	ND	0.500	ND	1.76		2.5	
Vinyl bromide	ND	0.500	ND	2.18		2.5	
Vinyl chloride	ND	0.500	ND	1.28	·	2.5	
•							

Project Name: COMPUTER CIRCUITS

Project Number: TED0001

Lab Number: Report Date: L0908506 07/01/09

SAMPLE RESULTS

Lab ID:

L0908506-04

Client ID:

EFFLUENT

Sample Location:

145 MARCUS BLVD

Matrix:

Soil_Vapor 48,TO-15

Anaytical Method: Analytical Date:

06/27/09 03:24

Analyst:

RY

Date Collected:

Date Received:

06/23/09 16:15 06/24/09

Field Prep:

Not Specified

		ppbV			ug/m	3		Dilution
Parameter	· ·	Results	RDL	R	esults	RDL	Qualifier	Factor
Volatile Organics in Air (Low Le	evel) - Ma	nsfield Lab		-				
1,1,1-Trichloroethane		37.7	0.200		206	1.09		1
1,1,2,2-Tetrachloroethane		ND	0.200		ND	1.37	1.2	1
1,1,2-Trichloroethane	. •	ND	0.200		ND	1.09		1
1,1-Dichloroethane	-	4.04	0.200		16.3	0.809		1
1,1-Dichloroethene		1.45	0.200		5.74	0.792		· 1
1,2,4-Trichlorobenzene		ND	0.200	•	ND	1.48		1
1,2,4-Trimethylbenzene		ND	0.200		ND .	0.982		. 1
1,2-Dibromoethane		ND	0.200		ND	1.54		1
1,2-Dichlorobenzene	•	· ND·	0.200		ND	1.20		1
1,2-Dichloroethane	-	ND	0.200		ND	0.809	• •	. 1
1,2-Dichloropropane		ND	0.200		ND ·	0.924		1 .
1,3,5-Trimethybenzene		ND	0.200		ND	0.982	•	1
1,3-Butadiene		ND .	0.200		ND	0.442	,	1
1,3-Dichlorobenzene		ND	0.200		ND	1.20	•	. 1
1,4-Dichlorobenzene	•	ND	0.200		ND	1.20		1
1,4-Dioxane		ND	0.200		ND	0.720		1
2,2,4-Trimethylpentane		ND -	0.200		ND	0.934		, 1
2-Butanone	•	ND	0.200		ND	0.589		1
2-Hexanone	_	ND	0.200		ND	0.819		1
3-Chloropropene	÷	ND	0.200		ND	0.626	•	1
4-Ethyltoluene		ND	0.200		ND	0.982		1
Acetone		3.29	0.500		7.81	1.19		1
Benzene		ND	0.200		ND	0.638		1
Benzyl chloride		ND .	0.200		ND ·	1.03		1
Bromodichloromethane		ND	0.200		ND	1.34		

Project Name: COMPUTER CIRCUITS

Project Number: TED0001

Lab Number:

L0908506

Report Date:

07/01/09

SAMPLE RESULTS

Lab ID:

L0908506-04

Client ID:

EFFLUENT

Sample Location:

145 MARCUS BLVD

Date Collected:

06/23/09 16:15

Date Received: Field Prep:

06/24/09 Not Specified

, .	ppbV		ug/m	ug/m3		Dilution	
Parameter	Results	RDL	Results	RDL	Qualifier	Factor	
Volatile Organics in Air (Low Level) - M	lansfield La)					
Bromoform	ŅD	0.200	ND	2.06	٠,	1	
Bromomethane	ND	0.200	ND	0.776		1	
Carbon disulfide	ND	0.200	ND	0.622		1	
Carbon tetrachloride	ND	0.200	ND	1.26	·	1	
Chlorobenzene	ND	0.200	ND	0.920		1	
Chloroethane	ND ·	0.200	ND	0.527	` .	1	
Chloroform	1.36	0.200	6.62	0.976		1	
Chloromethane	0.274	0.200	0.565	0.413		1	
is-1,2-Dichloroethene	4.24	0.200	16.8	0.792		1	
is-1,3-Dichloropropene	ND	0.200	ND	0.907		1 ·	
yclohexane	ND	0.200	ND .	0.688	•	1	
ibromochloromethane	ND	0.200	· ND	1.70		1	
ichlorodifluoromethane	0.556	0.200	2.74	0.988		1	
thanol	11.7	2.50	22.0	4.71		4	
thyl Acetate	ND	0.500	ND	1.80		1 .	
thylbenzene	ND	0.200	ND	0.868		1	
reon-113	44.9	0.200	344	1.53		1	
reon-1 <u>14</u>	ND	0.200	ND ·	1.40		1	
exachlorobutadiene	ND -	0.200	ND	2.13	-	1	
opropanol -	18.2	0.500	44.6	1.23		. 1	
lethylene chloride	0.932	0.500	3.23	. 1.74		1	
Methyl-2-pentanone	ND	0.200	: ND _,	0.819		ì	
lethyl tert butyl ether	ND	0.200	ND	0.720		1	
m-Xylene	ND	0.400	ND	1.74		1	
Xylene	. ND	0.200	ND	0.868		1	
eptane .	ND	0.200	· ND	0.819		1	
Hexane	ND	0.200	ND	0.704	•	1	
ropylene	ND	0.200	ND	0.344		1	

Project Name: COMPUTER CIRCUITS

Project Number: TED0001/

Lab Number:

L0908506

Report Date:

07/01/09

SAMPLE RESULTS

Lab ID:

L0908506-04

Client ID:

EFFLUENT

Sample Location:

145 MARCUS BLVD

Date Collected:

06/23/09 16:15

Date Received:

06/24/09

Field Prep:

Not Specified

•	ppbV		ug/m3	•		Dilution
Parameter	Results	RDL	Results	RDL	Qualifier	Factor
Volatile Organics in Air (Low Level) - Ma	ınsfield Lab					
Styrene	, ND	0.200	ND	0.851	•	1
Tetrachloroethene	ND	0.200	ND	1.36		
Tetrahydrofuran	0.290	0.200	0.855	0.589		1
Toluene	ND	0.200	ND	0.753		, ; 1
trans-1,2-Dichloroethene	0.640	0.200	2.54	0.792		1
trans-1,3-Dichloropropene	ND ,	0.200	ND	0.907		1
Trichloroethene	34.6	0.200	186	1.07		1 ,
Trichlorofluoromethane	0.586	0.200	3.29	1.12		· 1
Vinyl acetate	ND	0.200	ND '	0.704		1
Yinyl bromide	ND	0.200	ND	0.874	•	1
Vinyl chloride	ND	0.200	ND	0.511		1 1 2

Project Name: COMPUTER CIRCUITS

Project Number: TED0001

Lab Number:

L0908506

Report Date:

07/01/09

Method Blank Analysis Batch Quality Control

Analytical Method:

48,TO-15

Analytical Date:

06/26/09 18:10

Parameter Results RDL Results RDL Qualifier Factor Polatile Organics in Air (Low Level) - Mansfield Lab for sample(s): 01-04 Batch: WG363683-4 .1.1-Trichloroethane ND 0.200 ND 1.09 1 .1.2-Trichloroethane ND 0.200 ND 1.09 1 .1.1-Dichloroethane ND 0.200 ND 0.809 1 .1-Dichloroethane ND 0.200 ND 0.792 1 .1-Dichloroethane ND 0.200 ND 0.792 1 .2-4-Trichlorobenzene ND 0.200 ND 0.792 1 .2-4-Trimethylbenzene ND 0.200 ND 0.982 1 .2-Dichlorobenzene ND 0.200 ND 0.50 1 .2-Dichlorobenzene ND 0.200 ND 0.924 1 .2-Dichlorobenzene ND 0.200 ND 0.924 1 .2-Dichlorobenzene ND 0.200			ppbV	, 	ug/m3	·		Dilution
1,1-Trichloroethane	Parameter		Results	RDL	Results	RDL	Qualifier	Factor
1,1,2,2-Tetrachloroethane	Volatile Organics in Air	(Low Level)	- Mansfield Lal	o for sample(s): 01-04 Batch	: WG3	68683-4	
1,2-Trichloroethane	,1,1-Trichloroethane		ND	0.200	ND	1.09		1 .
1-Dichloroethane	,1,2,2-Tetrachloroethane	4	ND ·	0.200	ND	1.37		. 1
1-Dichloroethene	1,1,2-Trichloroethane	•	ND	0.200	, . ND	1.09		1
2,4-Trichlorobenzene ND 0,200 ND 1,48 1 1 2,4-Trimethylbenzene ND 0,200 ND 0,982 1 1 1 2,2-Dibromoethane ND 0,200 ND 1,54 1 1 1,2-Dibromoethane ND 0,200 ND 1,54 1 1 1,2-Dibromoethane ND 0,200 ND 1,20 1 1 1,2-Dibroroethane ND 0,200 ND 0,809 1 1 1,2-Dibroroethane ND 0,200 ND 0,992 1 1 1 1 1 1 1 1 1	,1-Dichloroethane	;	ND	0.200	· ND	0.809	•	1 1
1	,1-Dichloroethene		ND	0.200	ND	0.792	,	1
2-Dibromoethane	,2,4-Trichlorobenzene		ND	0.200	ND	1.48		1
2-Dichlorobenzene ND 0.200 ND 1.20 1 2-Dichloroethane ND 0.200 ND 0.809 1 2-Dichloropropane ND 0.200 ND 0.924 1 3,3-Trimethybenzene ND 0.200 ND 0.982 1 3-Butadiene ND 0.200 ND 0.442 1 3-Dichlorobenzene ND 0.200 ND 1.20 1 4-Dichlorobenzene ND 0.200 ND 1.20 1 4-Dichlorobenzene ND 0.200 ND 0.720 1 4-Dioxane ND 0.200 ND 0.720 1 2-2,4-Trimethylpentane ND 0.200 ND 0.934 1 Butanone ND 0.200 ND 0.589 1 Hexanone ND 0.200 ND 0.819 1 Chloropropene ND 0.200 ND 0.626 1 Ethyltoluene ND 0.200 ND 0.982 1 cetone ND 0.500 ND 1.19 1 enzene ND 0.200 ND 0.638 1	,2,4-Trimethylbenzene		. ND	0.200	ND	0.982		1
2-Dichloroethane ND 0.200 ND 0.809 1 2-Dichloropropane ND 0.200 ND 0.924 1 3,3-5-Trimethybenzene ND 0.200 ND 0.982 1 3,3-Butadiene ND 0.200 ND 0.442 1 3,3-Dichlorobenzene ND 0.200 ND 1.20 1 4-Dichlorobenzene ND 0.200 ND 1.20 1 4-Dichlorobenzene ND 0.200 ND 0.720 1 4-Dichlorobenzene ND 0.200 ND 0.720 1 4-Dichlorobenzene ND 0.200 ND 0.720 1 4-Dichlorobenzene ND 0.200 ND 0.589 1 4-Butanone ND 0.200 ND 0.589 1 4-Butanone ND 0.200 ND 0.819 1 4-Ethyltoluene ND 0.200 ND 0.626 1 5-Ethyltoluene ND 0.200 ND 0.982 1 6-Ethyltoluene ND 0.500 ND 1.19 1 6-Enzene ND 0.200 ND 0.638 1	,2-Dibromoethane		ND	0.200	ND	1.54		1
2-Dichloropropane ND 0.200 ND 0.924 1 1 3.5-Trimethybenzene ND 0.200 ND 0.982 1 1 3.5-Trimethybenzene ND 0.200 ND 0.442 1 1 3.5-Dichlorobenzene ND 0.200 ND 0.442 1 1 1 1 1 1 1 1 1	,2-Dichlorobenzene	٠.	ND	0.200	ND .	1.20		1
3,3,5-Trimethybenzene ND 0.200 ND 0.982 1 ,3-Butadiene ND 0.200 ND 0.442 1 ,3-Dichlorobenzene ND 0.200 ND 1.20 1 ,4-Dichlorobenzene ND 0.200 ND 1.20 1 ,4-Dichlorobenzene ND 0.200 ND 0.720 1 ,4-Dichlorobenzene ND 0.200 ND 0.720 1 ,4-Dichlorobenzene ND 0.200 ND 0.720 1 ,2,4-Trimethylpentane ND 0.200 ND 0.934 1 -Butanone ND 0.200 ND 0.589 1 -Hexanone ND 0.200 ND 0.819 1 -Hexanone ND 0.200 ND 0.626 1 -Ethyltoluene ND 0.200 ND 0.982 1 cetone ND 0.500 ND 1.19 1 enzene ND 0.200 ND 0.638 1 en	,2-Dichloroethane		ND	0.200	ND	0.809		1
ND 0.200 ND 0.442 1 1 1 1 1 1 1 1 1	,2-Dichloropropane	•	ND	0.200	ND	0.924		1
ND 0.200 ND 1.20 1.20 1	,3,5-Trimethybenzene	N. C. C.	ND	0.200	· ND	0.982		1
4-Dichlorobenzene ND 0.200 ND 1.20 1 4-Dioxane ND 0.200 ND 0.720 1 2,4-Trimethylpentane ND 0.200 ND 0.934 1 Butanone ND 0.200 ND 0.589 1	3-Butadiene		ND	0:200	, ND	0.442	•	1
4-Dioxane ND 0.200 ND 0.720 1 2,4-Trimethylpentane ND 0.200 ND 0.934 1 Butanone ND 0.200 ND 0.589 1 Hexanone ND 0.200 ND 0.819 1 Chloropropene ND 0.200 ND 0.626 1 Ethyltoluene ND 0.200 ND 0.982 1 cetone ND 0.500 ND 1.19 1 enzene ND 0.200 ND 0.638 1 enzyl chloride ND 0.200 ND 0.638 1	3-Dichlorobenzene		ND	0.200	ND	1.20		1
2,4-Trimethylpentane	4-Dichlorobenzene	, , , , , , , , , , , , , , , , , , ,	ND	0.200	ND	1.20	• •	1
Butanone	4-Dioxane		ND	0.200	ND	0.720		1
ND 0.200 ND 0.819 1 -Chloropropene ND 0.200 ND 0.626 1 -Ethyltoluene ND 0.200 ND 0.982 1 -cetone ND 0.500 ND 1.19 1 -enzene ND 0.200 ND 0.638 1 -enzyl chloride ND 0.200 ND 1.03 1	,2,4-Trimethylpentane		ND	0.200	· ND	0.934	,	1
ND 0.200 ND 0.626 1 -Ethyltoluene	Butanone		ND	0.200	ND	0.589		1 -
ND 0.200 ND 0.982 1	-Hexanone		ND	0.200	ND	0.819		1
cetone ND 0.500 ND 1.19 1 enzene ND 0.200 ND 0.638 1 enzyl chloride ND 0.200 ND 1.03 1	-Chloropropene		ND	0.200	ND	0.626	•	1
enzene ND 0.200 ND 0.638 1 enzyl chloride ND 0.200 ND 1.03 1	Ethyltoluene		ND /	0.200	ND	0.982		1
enzyl chloride ND 0.200 ND 1.03 1	cetone		ND	0.500	ND '	1.19		1
enzyl chloride ND 0.200 ND 1.03 1	enzene		ND	0.200	· ND	0.638	•	1
romodichloromethane ND 0.200 ND 1.34 1	enzyl chloride		ND	0.200	ND	1.03	•	1 .
	romodichloromethane		ND	0.200	ND	1.34		1

Project Name: COMPUTER CIRCUITS

Project Number: TED0001

Lab Number:

L0908506 07/01/09

Report Date:

Method Blank Analysis
Batch Quality Control

Analytical Method:

48,TO-15

Analytical Date:

06/26/09 18:10

	ppbV		ug/m3			Dilution
Parameter	Results	RDL	Results	RDL	Qualifier	Factor
Volatile Organics in Air (Low Lev	rel) - Mansfield Lab	for sample(s): 01-04 Batch:	WG368	8683-4	
Bromoform	ND	0.200	ND	2.06		1
Bromomethane	ND	0.200	ND	0.776	•	1
Carbon disulfide	ND	0.200	ND .	0.622	,	1
Carbon tetrachloride	, , , ND	0.200	ND	1.26		1 .
Chlorobenzene	ND	0.200	ND	0.920		1
Chloroethane	ND	0.200	ŅD	0.527		1 .
hloroform	ND	0.200	ND	0.976		1
Chloromethane	ND	0.200	ND	0.413		1
s-1,2-Dichloroethene	ND	0.200	ND	0.792	,	1
s-1,3-Dichloropropene	ND	0.200	ND	0.907		1
yclohexane	ND	0,200	ND	0.688		1
ibromochloromethane	ND	0.200	ND	1.70		· 1 .
ichlorodifluoromethane	ND	0.200	ND	0.988		, 1
thanol	ND	2.50	ND	4.71		. 1
thyl Acetate	ND	0.500	ND	1.80		1
thylbenzene	ND	0.200	ND	0.868		1
reon-113	ND	0,200	. ND	1.53	٠.	· 1
reon-114	ND	0.200	ND	1.40 .		1
exachlorobutadiene	ND	0.200 .	. ND	2.13		1 .
opropanol	ND .	0.500	ND	1.23		· 1 [;]
lethylene chloride	ND	0.500	ND	1.74		1
Methyl-2-pentanone	ND	0.200	ND	0.819		. 1
ethyl tert butyl ether	, ND	. 0.200	ND	0.720		1.
/m-Xylene	ND .	0.400	ND	1.74	4	1 ·
-Xylene	ND	0.200	ND	0.868		1

Project Name: COMPUTER CIRCUITS

Project Number: TED0001

Lab Number:

L0908506

Report Date: 07

07/01/09

Method Blank Analysis Batch Quality Control

Analytical Method:

48,TO-15

Analytical Date:

06/26/09 18:10

	ppbV		ug/m3			Dilution
Parameter	Results	RDL	Results	RDL	Qualifier	Factor
Volatile Organics in Air (Low Level) - N	lansfield Lab	for sample(s):	01-04 Batch:	WG3686	83-4	
Heptane	ND	0.200	ND	0.819		1
n-Hexane	ND	0.200	ND	0.704	•	. 1
Propylene	ND	0.200	ND	0.344		1
Styrene	ND	0.200	ND .	0.851		, 1
Tetrachloroethene	ND	0.200	ND	1.36		1
etrahydrofuran	ND	0.200	ND	0.589		. 1
oluene	ND	0.200	ND	0.753		1
rans-1,2-Dichloroethene	ND,	0.200	ND	0.792	**************************************	1
rans-1,3-Dichloropropene	ND ,	0.200	ND ·	0.907		1 -
richloroethene	ND:	0.200	ND	1.07		. 1
richlorofluoromethane	ND	0.200	ND	1.12		1
inyl acetate	ND.	0.200	ND	0.704		1
inyl bromide	ND	0.200	ND	0.874		· 1
/inyl chloride	ND ·	0.200	ND	0.511		1

0/010914:33

Project Name: COMPUTER CIRCUITS

Project Number: TED0001

Lab Number:

L0908506

Report Date:

07/01/09

Method Blank Analysis Batch Quality Control

Analytical Method:

48,TO-15-SIM

Analytical Date:

06/27/09 17:32

•	· · · · · · · · · · · · · · · · · · ·	ppbV		ug/m3			Dilution
Parameter	Res	sults	RDL	Results	RDL	Qualifier	Factor
Volatile Organics in Air b	y SIM - Mansfield La	ab for s	ample(s): 0	1 Batch: WG3	368712-4	. ,	
Trichloroethene		ND	0.020	ND	0.107		1

Project Name:

COMPUTER CIRCUITS

Project Number:

TED0001

Lab Number:

L0908506

Report Date:

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Volatile Organics in Air (Low Level) - M	ansfield Lab Associated sar	mple(s): 01-04 Batch:	WG368683-3		
1,1,1-Trichloroethane	104	- -	70-130		
1,1,2,2-Tetrachloroethane	103	- -	70-130	· •	· · · · · · · · · · · · · · · · · · ·
1,1,2-Trichloroethane	112	· ·	70-130	<u>-</u>	
1,1-Dichloroethane	106	-	70-130	•	
1,1-Dichloroethene	100		70-130	·	
1,2,4-Trichlorobenzene	100	· · ·	70-130		
1,2,4-Trimethylbenzene	116	· •	70-130	•	•
1,2-Dibromoethane	94		70-130	-	
1,2-Dichlorobenzene	1.16.	• • • • • • • • • • • • • • • • • • •	70-130	. · · · · · · · · · · · · · · · · · · ·	
1,2-Dichloroethane	124	-	70-130	-	
1,2-Dichloropropane	95	· •	70-130		
1,3,5-Trimethylbenzene	117	. -	70-130	· •	•
1,3-Butadiene	82	· •	70-130		
1,3-Dichlorobenzene	117	-	70-130	_	and the second s
1,4-Dichlorobenzene	114	· · · · · · · · · · · · · · · · · · ·	70-130		
1,4-Dioxane	94	· · · · · · · · · · · · · · · · · · ·	70-130	_	• • • • • • • • • • • • • • • • • • •
2,2,4-Trimethylpentane	82	. ·	70-130	• • • • • • • • • • • • • • • • • • •	
2-Butanone	100	~	70-130	<u>-</u>	
2-Hexanone	82	-	70-130		
3-Chloropropene	86	<u>.</u>	70-130	-	
4-Ethyltoluene	116	<u>.</u>	70-130	• •	
				•	

Project Name:

COMPUTER CIRCUITS

Project Number:

TED0001

Lab Number:

L0908506

Report Date:

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Volatile Organics in Air (Low Level) - Man	nsfield Lab Associated sar	mple(s): 01-04 Batch:	WG368683-3	· , · · ·	
Acetone	111	• •	70-130	· _	
Benzene	97	-	70-130	<u>.</u>	
Benzyl chloride	94	• •	70-130	•	
Bromodichloromethane	102	<u>.</u> ·	70-130	<u>.</u>	•
Bromoform	106	-	70-130	·	
Bromomethane	84		70-130	-	•
Carbon disulfide	87	-	70-130	•	
Carbon tetrachloride	1.15		70-130	_	
Chlorobenzene	108		70-130	· .	
Chloroethane	82	<u>-</u>	70-130	·-	
Chloroform	122	· •	70-130	,	
Chloromethane	83	· -	70-130		
cis-1,2-Dichloroethene	110	• · · · • • · · • • · · · · · · · · · ·	70-130	-	
cis-1,3-Dichloropropene	87		70-130		
Cyclohexane	72	-	70-130	·	
Dibromochloromethane	102	· · · · · · · · · · · · · · · · · · ·	70-130		
Dichlorodifluoromethane	108	•	70-130	-	•
Ethyl Alcohol	89	· <u>-</u> ·	70-130	-	
Ethyl Acetate	116		70-130	· .	•
Ethylbenzene	115		70-130	· .	
1,1,2-Trichloro-1,2,2-Trifluoroethane	103		70-130	•	

Project Name:

COMPUTER CIRCUITS

Project Number:

TED0001

Lab Number:

L0908506

Report Date:

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Volatile Organics in Air (Low Level) - I	Mansfield Lab Associated	sample(s): 01-04 Batch	n: WG368683-3		
1,2-Dichloro-1,1,2,2-tetrafluoroethane	91	·	70-130	•	••
Hexachlorobutadiene	110	•	70-130		•
iso-Propyl Alcohol	94		70-130	•	
Methylene chloride	82		70-130	•	
4-Methyl-2-pentanone	83	· · · · · · · · · · · · · · · · · · ·	70-130	·	• .
Methyl tert butyl ether	118		70-130		
p/m-Xylene	114		70-130	· ·	
o-Xylene	118		70-130	-	
Heptane	. 79	· .	70-130	•	
n-Hexane	79 ,	<u>-</u>	70-130	• • • • • • • • • • • • • • • • • • •	
Propylene	69	•	70-130	·	
Styrene	110	•	70-130	<u>.</u>	
Tetrachloroethene	103	•	70-130		
Tetrahydrofuran	112	•	70-130	·	
Toluene	102		70-130		
trans-1,2-Dichloroethene	98	-	70-130		
trans-1,3-Dichloropropene	87	<u>.</u>	70-130		
Trichloroethene	102	+1 .i	70-130		
Trichlorofluoromethane	124	• • • • • • • • • • • • • • • • • • •	70-130		•
Vinyl acetate	108	• • • • • • • • • • • • • • • • • • •	70-130		
Vinyl bromide	98	·	70-130		
		and the second second			•

Project Name:

COMPUTER CIRCUITS

Project Number:

TED0001

Lab Number:

L0908506

Report Date:

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Volatile Organics in Air (Low Level)	- Mansfield Lab Associated sa	mple(s): 01-04 Batch:	WG368683-3		
Vinyl chloride	90	•	70-130		

Volatile Organics in Air by SIM - Mansfield Lab	Associated sample(s): (01 Batch: WG36871	2-3	
1,1,1-Trichloroethane	111	•	70-130	
1,1,1,2-Tetrachloroethane	102	•	70-130	. :
1,1,2,2-Tetrachloroethane	93	. -	70-130	-
1,1,2-Trichloroethane	113	- -	70-130	-
1,1-Dichloroethane	114	-	70-130	-
1,1-Dichloroethene	108		70-130	-
1,2,4-Trimethylbenzene	99	•	70-130	-
1,2-Dibromoethane	93	• • • • • • • • • • • • • • • • • • •	70-130	
1,2-Dichlorobenzene	100		70-130	-

Project Name:

COMPUTER CIRCUITS

Project Number:

TED0001

Lab Number:

L0908506

Report Date:

Parameter	• .	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Volatile Organics in Air by SIM -	Mansfield Lab	Associated sample(s):	01 Batch: WG	368712-3		
1,2-Dichloroethane		153	- -	70-130	· ·	
1,2-Dichloropropane		91	-	70-130		
1,3,5-Trimethylbenzene		103	· · · · · · · · · · · · · · · · · · ·	70-130	• • • • • • • • • • • • • • • • • • •	
1,3-Butadiene		95	•	70-130	•	
1,3-Dichlorobenzene		103	_	70-130		•
1,4-Dichlorobenzene		101	en jaron a	70-130	•	
Benzene	,	90	-	70-130	•	
Bromodichloromethane		103	· •	70-130		
Bromoform		99	*	70-130	<u>.</u>	
Bromomethane		94	-	70-130	-	
Carbon tetrachloride		118	_	70-130		
Chlorobenzene		108	<u>.</u>	70-130		
Chloroethane	•	99		70-130	· .	
Chloroform		130	1 <u>.</u>	70-130	· · · · · · · · · · · · · · · · · · ·	•
Chloromethane		97	-	70-130	-	•
cis-1,2-Dichloroethene		117	- '	70-130	- ·	
cis-1,3-Dichloropropene		92	-	70-130		
Dibromochloromethane		100	- -	70-130	• • • • • • • • • • • • • • • • • • •	•
Dichlorodifluoromethane		117	· .	70-130	• •	
Ethylbenzene	• ,	103	<u>.</u>	70-130		
1,1,2-Trichloro-1,2,2-Trifluoroethane)	117		70-130		
				, 0 , 00		

Project Name:

COMPUTER CIRCUITS

Project Number:

TED0001

Lab Number:

L0908506

Report Date:

Parameter	LÇS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Volatile Organics in Air by SIM - Mansfield La	ab Associated sample	(s): 01 Batch: WG36	8712-3		
1,2-Dichloro-1,1,2,2-tetrafluoroethane	115	<u>.</u>	70-130	. , , , , , , , , , , , , , , , , , , ,	
Methylene chloride	96	-	70-130	•	
Methyl tert butyl ether	107		70-130	<u>-</u> .	
Naphthalene	88		70-130	-	
p/m-Xylene	106	-	70-130	<u>.</u>	<i>;</i>
o-Xylene	107	<u> </u>	70-130	• • •	·
Styrene	99		70-130	•	
Tetrachloroethene	115	•	70-130	<u>.</u>	
Toluene	94	-	70-130	• •	
trans-1,2-Dichloroethene	105		70-130		
trans-1,3-Dichloropropene	80.		70-130		
Trichloroethene	105	en an de la j .	70-130		
1,2,4-Trichlorobenzene	93		70-130	• .	
Trichlorofluoromethane	137	•	70-130	<u>-</u>	
Hexachlorobutadiene	93	• • • • • • • • • • • • • • • • • • •	70-130		
Vinyl chloride	101		70-130	·	
Acrylonitrile	90	<u>-</u>	70-130	-	
n-Butylbenzene	82	•	70-130	_	
sec-Butylbenzene	96		70-130	<u>-</u>	
Isopropylbenzene	108		70-130	•	
p-Isopropyltoluene	87	<u>-</u>	70-130	-	

Project Name:

COMPUTER CIRCUITS

Project Number: TED

TED0001

Lab Number:

L0908506

Report Date:

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Volatile Organics in Air by SIM - Mansfield La	ab Associated sample(s)	: 01 Batch: WG368	3712-3		
1,2-Dichloro-1,1,2,2-tetrafluoroethane	115	-	70-130		· . ·
Methylene chloride	96	<u>-</u>	70-130		
Methyl tert butyl ether	107		70-130	<u>.</u>	
Naphthalene	88		70-130	<u>-</u>	
p/m-Xylene	106	· ·	70-130		
o-Xylene	107		70-130	•	
Styrene	99		70-130	<u>.</u>	
Tetrachloroethene	115	•	70-130		
Toluene	94		70-130	-	
trans-1,2-Dichloroethene	105	<u>.</u>	70-130	-	
trans-1,3-Dichloropropene	80	<u>.</u>	70-130		
Trichloroethene	105	-	70-130	• • • • • • • • • • • • • • • • • • •	
1,2,4-Trichlorobenzene	93		70-130	-	
Trichlorofluoromethane	137	<u>.</u>	70-130	·	
Hexachlorobutadiene	93		70-130		•
Vinyl chloride	101	<u>.</u>	70-130	-	
Acrylonitrile	90	• ·	70-130	- . ·	
n-Butylbenzene	82	•	70-130	• • • • • • • • • • • • • • • • • • •	
sec-Butylbenzene	96	-	70-130	· · · · · · · · · · · · · · · · · · ·	
Isopropylbenzene	108	· ·	70-130	• -	
p-Isopropyltoluene	. 87		70-130	-	

Project Name:

COMPUTER CIRCUITS

Project Number:

TED0001

Lab Number:

L0908506

Report Date:

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Volatile Organics in Air by SIM - Ma	ansfield Lab Associated sample(s):	01 Batch: WG36	8712-3		
Acetone	108	•	70-130		•
2-Butanone	91	-	70-130	· · · · · · · · · · · · · · · · · · ·	
4-Methyl-2-pentanone	80		70-130	- -	· · · · · · · · · · · · · · · · · · ·
Halothane	128	<u>-</u>	70-130		· ·
1,2,3-Trichlorobenzene	97		70-130	· · · · · · · · · · · · · · · · · · ·	

COMPUTER CIRCUITS

Project Number: TED0001

Lab Duplicate Analysis Batch Quality Control

Lab Number:

L0908506

Report Date:

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
Volatile Organics in Air (Low Level) - Mansfield Lab MID POINT	Associated sample(s): 01-0-	QC Batch ID: WG368	683-5 QC	Sample: L0908506-0	3 Client ID: GAC
1,1,1-Trichloroethane	22.7	21.7	ppbV	5	25
1,1,2,2-Tetrachloroethane	· ND	ND	ppbV	NC	25
1,1,2-Trichloroethane	ND	ND	ppbV	NC	25
1,1-Dichloroethane	2.50	2.56	ppbV	2	25
1,1-Dichloroethene	1.02	1.02	ppbV	. 0	25
1,2,4-Trichlorobenzene	ND	ND	ppbV	NC	25
1,2,4-Trimethylbenzene	ND	ND	ppbV	NC	25
1,2-Dibromoethane	ND	ND	ppbV	NC	25
1,2-Dichlorobenzene	ND	ND	ppbV	NC	25
1,2-Dichloroethane	ND	ND .	ppbV	NC	25
1,2-Dichloropropane	ND	ND.	ppbV	NC .	25
1,3,5-Trimethybenzene	ND	ND .	ppbV [.]	NC	25
1,3-Butadiene	ND ·	ND	ppbV	NC	25
1,3-Dichlorobenzene	ND	ND	ppbV	NC	25
1,4-Dichlorobenzene	ND	ND	ppbV	NC	25
1,4-Dioxane	ND .	ND	ppbV	NC	25
2,2,4-Trimethylpentane	, ND	ND	ppbV	NC	25
2-Butanone	, ND	ND	ppbV	NC	25
2-Hexanone	ND	ND	ppbV	NC	25

COMPUTER CIRCUITS

Project Number: TED0001

Lab Duplicate Analysis Batch Quality Control

Lab Number:

L0908506

Report Date:

						· · · · · · · · · · · · · · · · · · ·
Parameter	Native Sample	-	Duplicate Sam	ple Units	RPD	RPD Limits
Volatile Organics in Air (Low Level) - Mansfield La MID POINT	ab Associated sample(s):	01-04	QC Batch ID: \	WG368683-5	QC Sample: L090850	6-03 Client ID: GAC
3-Chloropropene	ND		ND	ppbV	NC	25
4-Ethyltoluene	ND		ND	ppbV	NC	25
Acetone	8.37		8.08	ppbV	4	25
Benzene	ND		ND	ppbV	NC	25
Benzyl chloride	ND		ND	ppbV	NC NC	25
Bromodichloromethane	ND		ND	ppbV	NC	25
Bromoform	ND		ND	ppbV	NC	25
Bromomethane	ND		ND	ppbV	NC	25
Carbon disulfide	ND	٠	ND	ppbV	NC	25
Carbon tetrachloride	ND		ND	ppbV	NC	25
Chlorobenzene	ND		ND	ppbV	NC .	25
Chloroethane	, ND		, ND	ppbV	NC	25
Chloroform	0.825		0.817	ppbV	1	25
Chloromethane	ND		ND	ppbV	NC	25
cis-1,2-Dichloroethene	3.79		3.62	ppbV	5	25
cis-1,3-Dichloropropene	ND		ND	ppbV	NC	25
Cyclohexane	ND		. ND	ppbV	NC	25
Dibromochloromethane	ND	•	ND	ppbV	. NC	25
Dichlorodifluoromethane	0.642		0.568	ppbV	12	25

COMPUTER CIRCUITS

Project Number:

TED0001

Lab Duplicate Analysis Batch Quality Control

Lab Number:

L0908506

Report Date:

Parameter	Native Sample	Duplicate Sample	Units F	RPD RPD Li	mits
Volatile Organics in Air (Low Level) - Mansfield MID POINT	Lab Associated sample(s): 01-	O4 QC Batch ID: WG36868	3-5 QC Sample:	L0908506-03 Client IE): GAC
Ethanol	9.99	8.96	ppbV	11 25	5
Ethyl Acetate	ND	ND	ppbV	NC 25	5
Ethylbenzene	ND	ND	ppbV	NC 25	5
Freon-113	21.1	21.4	ppbV	1 , 25	 5
Freon-114	ND	ND	ppbV	NC 25	5
Hexachlorobutadiene	ND -	ND	ppbV	NC 25	; · · · .
Isopropanol	21.3	20.0	ppbV	6 25	5 · .
Methylene chloride	ND	. · ND	ppbV	NC 25	;
4-Methyl-2-pentanone	ND .	ND	ppbV I	NC 25	;
Methyl tert butyl ether	ND	ND	ppbV - I	NC 25	; · · · · · · · · · · · · · · · · · · ·
p/m-Xylene	ND	ND	ppbV I	NC 25	;
o-Xylene	ND	ND	ppbV	NC 25	; ·
Heptane	ND	ND	ppbV	NC , 25	
n-Hexane	ND	ND	ppbV I	NC 25	i
Propylene	ND	ND	ppbV	NC 25	
Styrene	ND	ND	ppbV !	NC 25	
Tetrachloroethene	ND	ND	ppbV 1	NC 25	
Tetrahydrofuran	ND.	ND	ppbV	NC 25	
Toluene	ND	ND	ppbV 1	NC . 25	•

COMPUTER CIRCUITS

Project Number: TED0001

Lab Duplicate Analysis Batch Quality Control

trol Lab Number:

L0908506

Report Date:

Parameter	Native Sample	Duplicate Sample Units	s RPD	RPD Limits
Volatile Organics in Air (Low Level) - Mansfield Lab	Associated sample(s): 01-04	QC Batch ID: WG368683-5	QC Sample: L0908506-03	3 Client ID: GAC
trans-1,2-Dichloroethene	0.540	0.558 ppbV	3	25
trans-1,3-Dichloropropene	ND	ND ppbV	NC	25
Trichloroethene	205	213 ppbV	4	25
Trichlorofluoromethane	0.524	0.571 ppbV	9	25
Vinyl acetate	ND	ND ppbV	NC	25
Vinyl bromide	ND ND	ND ppbV	NC	25
Vinyl chloride	ND	ND ppbV	, NC	25
Volatile Organics in Air by SIM - Mansfield Lab. Ass	sociated sample(s): 01 QC B	atch ID: WG368712-5 QC Sa	mple: L0908586-03 Client	ID: DUP Sample
Trichloroethene	0.648	0.651 ppbV	0	25

Project Name: COMPUTER CIRCUITS

Project Number: TED0001

Lab Number: L0908506

Report Date: 07/01/09

Canister and Flow Controller Information

					•		,		
Samplenum	Client ID	Media ID	Media Type	Cleaning Batch ID	Initial Pressure (in. Hg)	Pressure on Receipt (in. Hg)	Flow Out	Flow In mL/min	% RSD
L0908506-01	AS-2	0356	#16 AMB		· - ·	-	4.9	5.0	2
L0908506-01	AS-2	570	2.7L Can	10907124	-29.3	-2.4		•	- ·
L0908506-02	INFLUENT	0194	#30 SV		2	•	19.5	17.4	11
L0908506-02	INFLUENT	1718	2.7L Can	10907124	-29.3	-7.0	-	•	-
L0908506-03	GAC MID POINT	0047	#20 SV		, -	-	19.6	20.0	2
L0908506-03	GAC MID POINT	543	2.7L Can	10907124	-29.3	-9.1	-	-	-
L0908506-04	EFFLUENT	0176	#90 SV		<u> </u>	-	19.8	18.8	5
L0908506-04	EFFLUENT	395	2.7L Can	10907124	-29.2	-7.5	•	-	*

Project Name: COMPUTER CIRCUITS

Project Number: TED0001

Lab Number: L0908506

Report Date: 07/01/09

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Cooler -

Custody Seal

N/A

Present/Intact

Container Information

Container ID	Container Type	Cooler	рН	Temp	Pres	Seal	Analysis
L0908506-01A	Canister - 2.7 Liter	N/A	N/A		NA	Present/Intact	TO15-LL(30),TO15-SIM(30)
L0908506-02A	Canister - 2.7 Liter	N/A	N/A		NA	Present/Intact	TO15-LL(30)
L0908506-03A	Canister - 2.7 Liter	N/A	N/A		NA	Present/Intact	TO15-LL(30)
L0908506-04A	Canister - 2.7 Liter	N/A	N/A	•	NA	Present/Intact	TO15-LL(30)

Project Name:

COMPUTER CIRCUITS

Project Number:

TED0001

Lab Number:

L0908506

Report Date:

07/01/09

GLOSSARY

Acronyms

EPA

· Environmental Protection Agency.

LCS

Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD

Laboratory Control Sample Duplicate: Refer to LCS.

MS

- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.

MSD

· Matrix Spike Sample Duplicate: Refer to MS.

NA

Not Applicable.

NC

· Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

ND

· Not detected at the reported detection limit for the sample.

NI

Not Ignitable.

RDL

Reported Detection Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD

Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- * The batch duplicate RPD exceeds the acceptance criteria. This flag is not applicable when the sample concentrations are less than 5x the RDL. (Metals only.)
- A Spectra identified as "Aldol Condensation Product".
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte.
- D Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- N The matrix spike recovery exceeds the acceptance criteria. This flag is not applicable when the sample concentration is greater than 4x the spike added. (Metals only.)
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- R Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).

Report Format:

Data Usability Report

Certificate/Approval Program Summary

Last revised June 17, 2009 - Mansfield Facility

The following list includes only those analytes/methods for which certification/approval is currently held. For a complete listing of analytes for the referenced methods, please contact your Alpha Customer Service Representative.

Connecticut Department of Public Health Certificate/Lab ID: PH-0141.

Wastewater/Non-Potable Water (Inorganic Parameters: pH, Turbidity, Conductivity, Alkalinity, Aluminum, Antimony, Arsenic, Barium, Beryllium, Boron, Cadmium, Calcium, Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Strontium, Thallium, Tin, Vanadium, Zinc, Total Residue (Solids), Total Suspended Solids (non-filterable), Total Cyanide. Organic Parameters: PCBs, Organochlorine Pesticides, Technical Chlordane, Toxaphene, Acid Extractables, Benzidines, Phthalate Esters, Nitrosamines, Nitroaromatics & Isophorone, PAHs, Haloethers, Chlorinated Hydrocarbons, Volatile Organics.)

Solid Waste/Soil (Inorganic Parameters: pH, Aluminum, Antimony, Arsenic, Barium, Beryllium, Cadmium, Calcium, Chromium, Hexavalent Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Thallium, Vanadium, Zinc, Total Organic Carbon, Total Cyanide, Corrosivity, TCLP 1311. Organic Parameters: PCBs, Organochlorine Pesticides, Technical Chlordane, Toxaphene, Volatile Organics, Acid Extractables, Benzidines, Phthalates, Nitrosamines, Nitroaromatics & Cyclic Ketones, PAHs, Haloethers, Chlorinated Hydrocarbons.)

Florida Department of Health Certificate/Lab ID: E87814. NELAP Accredited.

Non-Potable Water (Inorganic Parameters: SM2320B, 4500NH3-F, EPA 120.1, SM2510B, 2340B, EPA 245.1, EPA 150.1, EPA 160.2, SM2540D, EPA 335.2, 420.1, SM2540G, EPA 180.1. Organic Parameters: EPA 625, 608.)

Solid & Chemical Materials (Inorganic Parameters: 6020, 7470, 7471, 9045, 9014. Organic Parameters: EPA 8260, 8270, 8082, 8081.)

Air & Emissions (EPA TO-15.)

Louisiana Department of Environmental Quality Certificate/Lab ID: 03090. NELAP Accredited.

Non-Potable Water (<u>Inorganic Parameters</u>: EPA 120.1, 150.1, 160.2, 180.1, 200.8, 245.1, 310.1, 335.2, 608, 625, 1631, 3010, 3015, 3020, 6020, 9010, 9014, 9040, SM2320B, 2510B, 2540D, 2540G, 4500CN-E, 4500H-B, <u>Organic Parameters</u>: EPA 3510, 3580, 3630, 3640, 3660, 3665, 5030, 8015 (mod), 3570, 8081, 8082, 8260, 8270,

Solid & Chemical Materials (Inorganic Parameters: 6020, 7196, 7470, 7471, 7474, 9010, 9014, 9040, 9045, 9060. Organic Parameters: EPA 8015 (mod), EPA 3570, 1311, 3050, 3051, 3060, 3580, 3630, 3640, 3660, 3665, 5035, 8081, 8082, 8260, 8270.)

Biological Tissue (Inorganic Parameters: EPA 6020. Organic Parameters: EPA 3570, 3510, 3610, 3630, 3640, 8270.)

Maine Department of Human Services Certificate/Lab ID: MA0030.

Wastewater (Inorganic Parameters: EPA 120.1, 300.0, SM 2320, 2510B, 2540C, 2540D, EPA 245.1. Organic Parameters: 608, 624.)

Massachusetts Department of Environmental Protection Certificate/Lab ID: M-MA030.

Non-Potable Water (Inorganic Parameters: SM4500H+B. Organic Parameters: EPA 624.)

New Hampshire Department of Environmental Services Certificate/Lab ID: 2206. NELAP Accredited.

Non-Potable Water (Inorganic Parameters: EPA 200.8, 245.1, 1631E, 120.1, 150.1, 180.1, 310.1, 335.2, 160.2, SM2540D, 2540G, 4500CN-E, 4500H+B, 2320B, 2510B. Organic Parameters: EPA 625, 608.)

New Jersey Department of Environmental Protection Certificate/Lab ID: MA015. NELAP Accredited.

Non-Potable Water (Inorganic Parameters: SW-846 1312, 3010, 3020A, 3015, 6020, SM2320B, EPA 200.8, SM2540C, 2540D, 2540G, EPA 120.1, SM2510B, EPA 180.1, 245.1, 1631E, SW-846 9040B, 6020, 9010B, 9014 Organic Parameters: EPA 608, 625, SW-846 3510C, 3580A, 5030B, 3035L, 5035H, 3630C, 3640A, 3660B, 3665A, 8081A, 8082 8260B, 8270C)

Solid & Chemical Materials (Inorganic Parameters: SW-846 6020, 9010B, 9014, 1311, 1312, 3050B, 3051, 3060A, 7196A, 7470A, 7471A, 9045C, 9060. Organic Parameters: SW-846 3580A, 5030B, 3035L, 5035H, 3630C, 3640A, 3660B, 3665A, 8081A, 8082, 8260B, 8270C, 3570, 8015B.)

Atmospheric Organic Parameters (EPA TO-15)

Biological Tissue (Inorganic Parameters: SW-846 6020 Organic Parameters: SW-846 8270C, 3510C, 3570, 3610B, 3630C, 3640A)

New York Department of Health Certificate/Lab ID: 11627. NELAP Accredited.

Non-Potable Water (Inorganic Parameters: EPA 310.1, SM2320B, EPA 365.2, 160.1, EPA 160.2, SM2540D, EPA 200.8, 6020, 1631E, 245.1, 335.2, 9014, 150.1, 9040B, 120.1, SM2510B, EPA 376.2, 180.1, 9010B. Organic Parameters: EPA 624, 8260B, 8270C, 608, 8081A, 625, 8082, 3510C, 3511, 5030B.)

Solid & Hazardous Waste (Inorganic Parameters: EPA 9040B, 9045C, SW-846 Ch7 Sec 7.3, EPA 6020, 7196A, 7471A, 7474, 9014, 9040B, 9045C, 9010B. Organic Parameters: EPA 8260B, 8270C, 8081A, DRO 8015B, 8082, 1311, 3050B, 3580, 3050B, 3035, 3570, 3051, 5035, 5030B.)

Air & Emissions (EPA TO-15.)

Pennsylvania Department of Environmental Protection Certificate/Lab ID: 68-02089. NELAP Accredited.

Non-Potable Water (Organic Parameters: EPA 5030B, EPA 8260)

Rhode Island Department of Health Certificate/Lab ID: LAO00299. NELAP Accredited via LA-DEQ.

Refer to MA-DEP Certificate for Non-Potable Water.

Refer to LA-DEQ Certificate for Non-Potable Water.

Texas Commission of Environmental Quality Certificate/Lab ID: T104704419-08-TX. NELAP Accredited.

Solid & Chemical Materials (Inorganic Parameters: EPA 6020, 7471. Organic Parameters: EPA 8015, 8270.)

U.S. Army Corps of Engineers

	•														÷									
	ΔIF	R AN	ΙΔΙΝ	212						Date	Rec'd	n l ab			 :			A1 F	LIA I	- 1- 44.	/ //	charal.	<u> </u>	
% \\\						AGE OF								2	D. I'							908506) 	
		AIN O STOD		Projec	t Inform	ation				Re _i		itorn	nation		Deli MAIL	veran	oles			forma s Client		PO #: '		
8 Walkup Drive, Wes	stborough, MA 01581	3100	.1								ADEx				dd'i De	liverab	ies		Junio a				•	_
TEL: 508-898-9220	FAX: 508-898-9193			Project	Name: Co	mputer Ci	rcuits					ny Ra	equire						_		•			
Client Informa	tion			Project	Location:	145 Marcu	is Blvd	·····			e/Fed	1 y 1 X	-come	Progra		JOIL L		Criter	ia					
Client: PW Gross	er			Project	#: TED000	01								`,										
Address:630 Joh	nson Ave, Ste 7			Project	Manager:	Kris Almsl	kog			<u> </u>														
Bohemia, NY 117	716			ALPHA	Quote #:					· .					•									
Phone: 631-589-	6353			Turn-A	round T	ime				Ar	naly	sis						,					TO	
Fax: 631-589-870)5	· · · · · · · · · · · · · · · · · · ·		Stan	dard	☐ Rus	h (ONLY	IF PRE-APPR	OVED)				Ι	: '		•		T :	<u> </u>	ļ-		ļ <u>.</u>	T A	
Email: thomasm@	pwgrosser.com	<u> </u>										,				NS	>-		İ					
	ve been Previously analy	•		Due Da		Time:										\PT/	ONLY					<u>.</u>	C>	Ų
	pecific Requirem		nments/l	Detection	Limits:		-			T	·				•	RC/	002						0 N	
Silvi Analysis for	trichloroethene in A	15-2	:										SES			S/ME	GASES		·			; 	T	
			,				v						DISSOLVED GASES	SES		SULFIDES/MERCAPTANS								
ALPHA Lab ID	Sample ID)	-	Collection		Sample	Samp	- DI	ID	┪╸			LVE	GA	Α:	S	5	SIM				-		7
(Lab Use Only)	·		Date 1	Start Time	End Time	Matrix	ler initial s	. CAN	Flow Control	TO-14A	TO-15	АРН	DISSC	FIXED GASES	TO-13A	TO-15	DISSOLVED	TO-15	-			Sample Specific		
908506-1	AS-2		6/24/09	08:15	16:00	AA	TM	570	0356									\boxtimes						+
	Influent	-	6/24/09	14.30	16:15.	sv	TM	1718	0194		\boxtimes													4
3	GAC Mid Point	-	6/24/09	14:30	16:15	sv	TM	3965y3	0047		\boxtimes													٦
	Effluent		6/24/09	14:30	16:15	SV	TM.	545395	0176		\boxtimes												- -	
			<u>3</u>			·									\Box								· .	
	·						· · · · · · · · · · · · · · · · · · ·	<u> </u>		닏			Щ	빌	Ш	브		<u> </u>						
			·		<u></u>					片		屵	H	井	뷔	<u> </u>		Ц.		빌				_ .
			· ·	*********					·	片片	H	旹	片	井	井	片		ᆜ	井	井	붜			4
											H	\exists		븕	퓜	<u>님</u>		片		片	븸			4
Shaded Gray Area	s For Lab Use On	ily!		•				Contair	ег Туре		cs.	<u> </u>	-		-	-		CS						2
	**				-	Relino	uished-	³ 7)		Da	ite/Time		7		Receiv	ed Bv			D:	ate/Tim		Please print clea	arly, legibly	八 八 八 八 八 八 八 八 八 八 八 八 八 八 八 八 八 八 八
				٠. ا						6/2\$/09	- 10:30) .	Fe.	رسرا	10040	-De	, .			-0. 5	۲0	and completely can not be logge turnaround time	ed in and	
			-	<u> </u>	Mu	_ for	gufc	f_		10/6	164	12:3	3	7	el !	E	K		-41	<u>- </u>	7.11.	not start until an	v o	
Form 01-03 (I)	· · · · · · · · · · · · · · · · · · ·				1	Tel	11E	1		6/25	109	0931	ļ —	Di.	1	1. 7	(min)		10/20	-/	9.7	All samples subj subject to Alpha	mitted er e 15	
Revised 31-JUL-07m	•				,	. 7	/			4-7		وبست	·	/	<u>. (. K.A</u>		(. : ·	GJS25	104 0		Rayment Terms	က	ð,
			• •				•								:			; .			į	1 1	Page	
	·										_	.		٠.	_					•	_			

ANALYTICAL REPORT

Lab Number:

. L0912778

Client:

P. W. Grosser

630 Johnson Avenue

Suite 7

Bohemia, NY 11716

ATTN:

Kris Almskog 🔝

Project Name:

COMPUTER CIRCUITS

Project Number:

TED0001

Report Date:

09/16/09

Certifications & Approvals: MA (M-MA030), NY (11627), CT (PH-0141), NH (2206), NJ (MA015), RI (LAO00299), ME (MA0030), PA (Registration #68-02089), LA NELAC (03090), FL NELAC (E87814), US Army Corps of Engineers.

320 Forbes Boulevard, Mansfield, MA 02048-1806 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.alphalab.com

COMPUTER CIRCUITS

Project Number:

TED0001

Lab Number:

L0912778

Report Date:

09/16/09

Alpna Sample ID	Client ID	Location	Collection Date/Time
L0912778-01	AS-2	145 MARCUS BLVD	09/09/09 15:20
L0912778-02	INFLUENT	145 MARCUS BLVD	09/09/09 16:50
L0912778-03	GAC MIDPOINT	145 MARCUS BLVD	09/09/09 16:50
L0912778-04	EFFLUENT	145 MARCUS BLVD	09/09/09 16:50

COMPUTER CIRCUITS

Project Number:

TED0001

Lab Number:

L0912778

Report Date:

09/16/09

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet all of the requirements of NELAC, for all NELAC accredited parameters. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

For additional information, please contact Client Services at 800-624-9220.

Volatile Organics in Air (Low Level)

L0912778-01 through -04 results for Acetone should be considered estimated due to co-elution with a non-target peak.

L0912778-03 has elevated detection limits due to the dilution required by the elevated concentrations of target compounds in the sample.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Kathelin M. opinin

Title: Technical Director/Representative

Date: 09/16/09

AIR

Project Name:

COMPUTER CIRCUITS

Project Number:

TED0001

Lab Number:

L0912778

Report Date:

09/16/09

SAMPLE RESULTS

Lab ID:

L0912778-01

Client ID:

AS-2

Sample Location:

145 MARCUS BLVD

Matrix:

Air

Anaytical Method: Analytical Date:

48,TO-15 09/15/09 17:13

Analyst:

ΑJ

Date Collected:

09/09/09 15:20

Date Received:

09/11/09

Field Prep:

•	ppbV	<u>'</u> .	ug/m	3	Dilution
Parameter	Results	RDL	Results	RDL	Qualifier Factor
Volatile Organics in Air (Low Level) - Mansfield Lab	•	•		
1,1,1-Trichloroethane	ND	0.200	ND	1.09	1
1,1,2,2-Tetrachloroethane	ND	0.200	· ND	1.37	1.
1,1,2-Trichloroethane	ND	0.200	ND	1.09	1
I,1-Dichloroethane	ND	0.200	ND	0.809	. 1
,1-Dichloroethene	ND .	0.200	ND	0.792	1
,2,4-Trichlorobenzene	ND	0.200	ND	1.48	1
,2,4-Trimethylbenzene	0.281	0.200	1.38	0.982	1
,2-Dibromoethane	· ND	0.200	ND	1.54	1
,2-Dichlorobenzene	ND .	0.200	ND	. 1.20	1
,2-Dichloroethane	ND	0.200	ND	0.809	1
,2-Dichloropropane	ND	0.200	ND ·	0.924	· 1
,3,5-Trimethybenzene	ND	0.200	ND .	0.982	1
,3-Butadiene	ND	0.200	ND	0.442	1
,3-Dichlorobenzene	ND	0.200	ND	1.20	
,4-Dichlorobenzene	ND .	0.200	ND	1.20	, 1
,4-Dioxane	· ND	0.200	ND	0.720	1
,2,4-Trimethylpentane	ND	0.200	ND	0.934	. 1
-Butanone	1.57	0.200	4.62	0.589	1
-Hexanone	ND	0.200	ND	0.819	1
-Chloropropene	ND	0.200	ND	0.626	1
Ethyltoluene	ND	0.200	ND.	0.982	. 1
cetone	17.0	1.00	40.2	2.37	1
enzene	0.229	0.200	0.731	0.638	. 1
enzyl chloride	ND	0.200	ND	1.03	1
romodichloromethane	ND	0.200	NĎ	1.34	

Project Name:

COMPUTER CIRCUITS

Project Number:

TED0001

Lab Number:

L0912778

Report Date:

09/16/09

SAMPLE RESULTS

Lab ID:

L0912778-01

· · Client ID:

AS-2

Sample Location:

145 MARCUS BLVD

Date Collected:

09/09/09 15:20

Date Received:

09/11/09

Field Prep:

•	ppbV	<u> </u>	ug/m	3	Dilution
Parameter	Results	RDL	Results	RDL	Qualifier Factor
Volatile Organics in Air (Low Level)	- Mansfield Lab				
Bromoform	ND	0.200	ND	2.06	1
Bromomethane	ND	0.200	ND	0.776	1
Carbon disulfide	. ND	0.200	. ND	0.622	1
Carbon tetrachloride	ND	0.200	, ND	1.26	1
Chlorobenzene	ND .	0.200	ND	0.920	1
Chloroethane	ND	0.200	ND	0.527	1
Chloroform	ND	0.200	ND	0.976	1
Chloromethane	0.661	0.200	1.36	0.413	1
sis-1,2-Dichloroethene	. ND	0.200	ND	0.792	1
is-1,3-Dichloropropene	ND	0.200	ND	0.907	1
Cyclohexane	ND	0.200	ND	0.688	i
Dibromochloromethane	ND	0.200	ND	1.70	. 1
Dichlorodifluoromethane	0.594	0.200	2.94	0.988	
Ethanol	48.3	2.50	91.0	4.71	1
thyl Acetate	ND	0.500	ND	1.80	1
thylbenzene	0.213	0.200	0.924	0.868	· 1
reon-113	0.586	0.200	4.49	1.53) · · · · · · · · · · · · · · · · · · ·
reon-114	ND	0.200	, ND	1.40	·
lexachlorobutadiene	ND	0.200	ND	2.13	1
sopropanol	84.4	0.500	207	1.23	1
lethylene chloride	1.33	0.500	4.62	1.74	1
-Methyl-2-pentanone	0.281.	0.200	1.15	0.819	
lethyl tert butyl ether	ND	0.200	. ND	0.720	1
/m-Xylene	0.466	0.400	2.02	1.74	1
-Xylene	ND .	0.200	ND	0.868	1
eptane	0.627	0.200	2.57	0.819	1
-Hexane	ND	0.200	ND	0.704	, · 1
ropylene ·	0.300	0.200	0.516	0.344	'. 1

Project Name:

COMPUTER CIRCUITS

Project Number:

TED0001

Lab Number:

L0912778

Report Date:

09/16/09

SAMPLE RESULTS

Lab ID:

L0912778-01

Client ID:

Sample Location:

AS-2

145 MARCUS BLVD

Date Collected:

09/09/09 15:20

Date Received:

09/11/09

Field Prep:

•		* *				Trot opcome
	ppbV	<u> </u>	ug/m	3		Dilution
Parameter	Results	RDL	Results	RDL	Qualifier	Factor
Volatile Organics in Air (Low Level)	- Mansfield Lab)				
Styrene	ND	0.200	ND	0.851	•	1 .
Tetrachloroethene	ND	0.200	ND	1.36	,	1
Tetrahydrofuran	ND ·	0.200	ND	0.589		1 .
Foluene .	1.42	0.200	5.36	0.753		1 1
rans-1,2-Dichloroethene	ND	0.200	ND	0.792		1
rans-1,3-Dichloropropene	, ND	0.200	ND	0.907		· 1
richloroethene	0.267	0.200	1.43	1.07	•	1
richlorofluoromethane	0.550	0.200	3.09	1.12		. 1
/inyl acetate	ND	0.200	ND	0.704		1
/inyl bromide	, ND	0.200	ND ·	0.874	•	1
/inyl chloride	ND.	0.200	ND	0.511		1

Project Name:

COMPUTER CIRCUITS

Project Number:

TED0001

Lab Number:

L0912778

Report Date:

09/16/09

SAMPLE RESULTS

Lab ID:

L0912778-01

Client ID:

AS-2

Sample Location:

145 MARCUS BLVD

Matrix:

.Air

Anaytical Method: Analytical Date: 48,TO-15-SIM 09/15/09 17:13

Analyst:

AJ

Date Collected:

09/09/09 15:20

Date Received:

09/11/09

Field Prep:

•	ppb\	<u>/ · · · · · · · · · · · · · · · · · · ·</u>	ug/m	13		Dilution	
Parameter	Results	RDL	Results	RDL	Qualifier	Factor	
Volatile Organics in Air by SIM - Ma	nsfield Lab						
Trichloroethene	0.270	0.020	1.45	0.107		1	

Project Name:

COMPUTER CIRCUITS

Project Number:

TED0001

Lab Number:

L0912778

Report Date:

09/16/09

SAMPLE RESULTS

Lab ID:

L0912778-02

Client ID:

INFLUENT

Sample Location:

145 MARCUS BLVD

Matrix:

Soil_Vapor 48,TO-15

Anaytical Method: Analytical Date:

09/15/09 18:31

Analyst:

ΑJ

Date Collected:

09/09/09 16:50

Date Received:

09/11/09

Field	Prep:

	ppbV		ug/m	3 _. .	Dilution
Parameter	Results	RDL	Results	RDL	Qualifier Factor
Volatile Organics in Air (Low Level) - Mansfield Lab	· 11.			
1,1,1-Trichloroethane	4.19	0.200	22.8	1.09	1
1,1,2,2-Tetrachloroethane	ND	0.200	ND	1.37	1
1,1,2-Trichloroethane	· ND	0.200	ND	1.09	1
1,1-Dichloroethane	1.91	0.200	7.74	0.809	· 1
1,1-Dichloroethene	0.514	0.200	2.04	0.792	· · · · · · · · · · · · · · · · · · ·
1,2,4-Trichlorobenzene	ND	0.200	ND	1.48	· · · · · · · · · · · · · · · · · · ·
1,2,4-Trimethylbenzene	ND	0.200	ND	0.982	1
1,2-Dibromoethane	ND	0.200	ND	1.54	1
1,2-Dichlorobenzene	ND	0.200	· ND	1.20	1
1,2-Dichloroethane	ND	0.200	ND	0.809	1
1,2-Dichloropropane	ND	0.200	ND	0.924	1
1,3,5-Trimethybenzene	ND	0.200	ND	0.982	1
1,3-Butadiene	ND	0.200	ND	0.442	; <u>1</u>
1,3-Dichlorobenzene	ND	0.200	ND	1.20	1 ·
1,4-Dichlorobenzene	ND	0.200	ND	1.20	1 .
1,4-Dioxane	ND	0.200	ND	0.720	. 1
2,2,4-Trimethylpentane	ND	0.200	ND	0.934	. , , , , , , , , , , , , , , , , , , ,
2-Butanone	0.866	0.200	2.55	0.589	1
2-Hexanone	, ND	0.200	ND ·	0.819	1
3-Chloropropene	ND.	0.200	ND ,	0.626	1
4-Ethyltoluene	ND .	0.200	ND .	0.982	. 1
Acetone	8.26	1.00	19.6	2.37	1
Benzene	ND	0.200	ND	0.638	, 1
Benzyl chloride	ND	0.200	ND	1.03	<i>),</i> 1
Bromodichloromethane	ND	0.200	ND	1.34	1

Project Name:

COMPUTER CIRCUITS

Project Number:

TED0001

Lab Number:

L0912778

Report Date:

09/16/09

SAMPLE RESULTS

Lab ID:

L0912778-02

Client ID:

INFLUENT

Sample Location:

145 MARCUS BLVD

Date Collected:

09/09/09 16:50

Date Received:

09/11/09

Field Prep:

	ppbV		ug/n	13		Dilution	
Parameter	Results	RDL	Results	RDL	Qualifier	Factor	
Volatile Organics in Air (Low Level) - M	ansfield Lab						-
Bromoform	ND	0.200	ND .	2.06	٠.	1	
Bromomethane	ND	0.200	. ND	0.776		1	
Carbon disulfide	ND	0.200	ND	0.622		1	
Carbon tetrachloride	ND	0.200	ND	1.26		1 .	
Chlorobenzene	ND	0.200	ND	0.920		1	
Chloroethane	ND ·	0.200	ND	0.527		1	
Chloroform	0.417	0.200	. 2.03	0.976		1	
Chloromethane	0.361	0.200	0.745	0.413		1	. *
cis-1,2-Dichloroethene	3.06	0.200	12.1	0.792		1	
cis-1,3-Dichloropropene	ND	0.200	ND	0.907		. 1	4
Cyclohexane	ND	0.200	ND	0.688		1	
Dibromochloromethane	ND	0.200	ND	1.70		. 1	
Dichlorodifluoromethane	0.626	0.200	3.09	0.988	`.	. 1	
Ethanol	17.2	2.50	32.5	4.71		. 1	
Ethyl Acetate	ND .	0.500	ND	1.80		1	٠.
Ethylbenzene	ND	0.200	ND .	0.868		1	
Freon-113	2.99	0.200	22.9	1.53		1	
Freon-114	ND.	0.200	ND	1.40		1	
Hexachlorobutadiene	ND	0.200	ND	2.13	•	1	•
Isopropanol	25.0	0.500	61.4	1.23	e.	11	(
Methylene chloride	ND	0.500	ND	1.74		1.1	
4-Methyl-2-pentanone	ND	0.200	ND	0.819		. 1	
Methyl tert butyl ether	ND	0.200	ND	0.720		 1	
p/m-Xylene	, ND	0.400	ND	1.74		1 -	
o-Xylene	ND	0.200	ND	0.868		1	
Heptane	ND	0.200	ND	0.819		· 1	
n-Hexane	ND	0.200	ND	0.704		1	
Propylene	ND	0.200	ND	0.344		1	
			•			•	

Project Name:

COMPUTER CIRCUITS

Project Number:

TED0001

Lab Number:

L0912778

Report Date:

09/16/09

SAMPLE RESULTS

Lab ID:

L0912778-02

Client ID: Sample Location:

INFLUENT 145 MARCUS BLVD Date Collected:

09/09/09 16:50

Date Received:

09/11/09

Field Prep:

•								
	ppbV			ug/m	3	•	Dilution	
Parameter	Results	RDL		Results	RDL	Qualifier	Factor	
Volatile Organics in Air (Low Level) - Ma	ansfield Lab							
Styrene	ND .	0.200		ND .	0.851		1	
Tetrachloroethene	6.85	0.200		46.4	1.36	,	. 1	
Tetrahydrofuran	ND	0.200	•	ND	0.589		1,	
Toluene	0.498	0.200		1.88	0.753		1	
trans-1,2-Dichloroethene	0.620	0.200		2.46	0.792		1	. • .
trans-1,3-Dichloropropene	ND	0.200		ND	0.907		1	
Trichloroethene	97.5	0.200		524	1.07		1	
Trichlorofluoromethane	0.550	0.200		3.09	1.12		1.	
Vinyl acetate	ND	0.200		ND	0.704		1	
Vinyl bromide	ND	0.200	•	ND	0.874	• •	1	
Vinyl chloride	ND	0.200		ND	0.511		1	
	•							

Project Name:

COMPUTER CIRCUITS

Project Number:

TED0001

Lab Number:

L0912778

Report Date:

09/16/09

SAMPLE RESULTS

Lab ID:

L0912778-03 D

Client ID: Sample Location: GAC MIDPOINT 145 MARCUS BLVD

Matrix:

Soil_Vapor 48,TO-15

Anaytical Method: Analytical Date:

09/15/09 19:09

Analyst:

AJ

Date Collected:

09/09/09 16:50

Date Received:

09/11/09

Field Prep:

		ppbV	12	ug/m3	3 :		Dilution
Parameter		Results	RDL	Results	RDL	Qualifier	Factor
Volatile Organics in Air (Low Leve	el) - Ma	ansfield Lab	5 1 z				
1,1,1-Trichloroethane		10.6	0.500	57.8	2.72	' ,	2.5
1,1,2,2-Tetrachloroethane	٠	ND	0.500	ND	3.43		∤ 2.5
1,1,2-Trichloroethane		ND,	0.500	ND	2.72		2.5
1,1-Dichloroethane		1.70	0.500	6.90	2.02	•	2.5
1,1-Dichloroethene		, 0.775	0.500	3.07	1.98		2.5
1,2,4-Trichlorobenzene		ND	0.500	ND	3.71		2.5
1,2,4-Trimethylbenzene		ND	0.500	ND	2.46	•	2.5
1,2-Dibromoethane		ND :	0.500	ND	3.84	. ••	2.5
1,2-Dichlorobenzene	,	ND	0.500	ND ·	3.00	\ <u>.</u>	2.5
1,2-Dichloroethane		ND	0.500	ND	2.02		2.5
1,2-Dichloropropane		ND.	0.500	ND	` 2.31		2.5
1,3,5-Trimethybenzene	٠,	ND	0.500	ND .	2.46		2.5
1,3-Butadiene		ND	0.500	ND	1.10		2.5
1,3-Dichlorobenzene		ND :	0.500	ND	3.00		2.5
1,4-Dichlorobenzene		ND	0.500	ND	3.00		2.5
1,4-Dioxane		0.660	0.500	2.38	1.80	•	2.5
2,2,4-Trimethylpentane		ND	0.500	ND	2.33	. •	2.5
2-Butanone		ND	0.500	ND	1.47		2.5
2-Hexanone		ND .	0.500	ND	2.05	. • *	2.5
3-Chloropropene		ND	0.500	ND	1.56	. •	2.5
4-Ethyltoluene		ND	0.500	ND	2.46		2.5
Acetone		9.11	2.50	21.6	5.93		2.5
Benzene	•	ND	0.500	ND .	1.60	•	2.5
Benzyl chloride	•	ND	0.500	ND	2.59		2.5
Bromodichloromethane	•	ND	0.500	: 'ND	3.35	*	2.5

Project Name:

COMPUTER CIRCUITS

Project Number:

TED0001

Lab Number:

L0912778

Report Date:

09/16/09

SAMPLE RESULTS

Lab ID:

L0912778-03 D

Client ID: Sample Location: GAC MIDPOINT 145 MARCUS BLVD Date Collected:

09/09/09 16:50

Date Received:

09/11/09

Field Prep:

	ppbV		ug/m	3	Dilutio		
Parameter	Results	RDL	Results	RDL	Qualifier	Factor	
Volatile Organics in Air (Low Level) - i	Mansfield Lab						
Bromoform	ND	0.500	ND	5.16	;	2.5	
Bromomethane	ND	0.500	ND	1.94		2.5	
Carbon disulfide	ND	0.500	ND	1.56	•	2.5	
Carbon tetrachloride	ND	0.500	ND	3.14		2.5	
Chlorobenzene	ND	0.500	ND	2.30		2.5	
Chloroethane	ND	0.500	ND	1.32		2.5	
Chloroform	ND	0.500	ND .	2.44		2.5	
Chloromethane	ND	0.500	ND	1.03		2.5	
cis-1,2-Dichloroethene	2.56	0.500	10.2	. 1:98	•	2.5	
sis-1,3-Dichloropropene	ND	0.500	, ND	2.27		2.5	
Cyclohexane	ND	0.500	ND	1.72		2.5	
Dibromochloromethane	· ND	0.500	ND	4.26		2.5	
Dichlorodifluoromethane	0.618	0.500	3.05	2.47		2.5	
thanol	20.0	6.25	37.6	11.8	t	2.5	
Ethyl Acetate	ND	1.25	ND	4.50		2.5	
thylbenzene	ND	0.500	ND .	2.17		2.5	
reon-113	8.24	0.500	63.1	3.83		2.5	
reon-114	ND	0.500	ND	3.49		2.5	
lexachlorobutadiene	ND	0.500	ND	5.33		2.5	
sopropanol	29.4	1.25	72.3	3.07		2.5	
lethylene chloride	ND	1.25	ND	4.34		2.5	
-Methyl-2-pentanone	ND	0.500	ND	2.05		2.5	
lethyl tert butyl ether	ND	0.500	ND .	1.80		2.5	
/m-Xylene	ND	1.00	ND	4.34		2.5	
-Xylene	ND	0.500	ND	2.17		2.5	
leptane	ND	0.500	ND	2.05		2.5	
-Hexane	ND	0.500	ND	1.76	·	2.5	
Propylene	ND	0.500	ND	0.860		2.5	

Project Name:

COMPUTER CIRCUITS

Project Number:

TED0001

Lab Number:

L0912778

Report Date:

09/16/09

SAMPLE RESULTS

Lab ID:

L0912778-03 D

Client ID: Sample Location: GAC MIDPOINT 145 MARCUS BLVD Date Collected:

09/09/09 16:50

Date Received:

09/11/09

	_	
PIDIA!	Prep:	
i lelu	i iep.	

	ppb'	v	ug/m	3		Dilution	
Parameter	Results	RDL	Results	RDL	Qualifier	Factor	
Volatile Organics in Air (Low Level)	- Mansfield Lal)					
Styrene	ND	0.500	ND.	2.13		2.5	•
Tetrachloroethene	ND	0.500	ND	3.39		2.5	*
Tetrahydrofuran	ND	0.500	ND	1.47	•	2.5	
Toluene	ND	0.500	ND	1.88	*	2.5	
trans-1,2-Dichloroethene	0.622	0.500	2.47	1.98		2.5	
trans-1,3-Dichloropropene	ND	0.500	ND	2.27		2.5	
Trichloroethene	227	0.500	1220	2.68		2.5	
Trichlorofluoromethane	0.705	0.500	3.96	2.81		2.5	
Vinyl acetate ,	ND	0.500	ND	1.76		2.5	•
Vinyl bromide	ND	0.500	ND	2.18		2.5	
Vinyl chloride	ND	0.500	ND	1.28		2.5	

Project Name:

COMPUTER CIRCUITS

Project Number:

TED0001

Lab Number:

L0912778

Report Date:

09/16/09

SAMPLE RESULTS

Lab ID:

L0912778-04

Client ID:

EFFLUENT

Sample Location:

145 MARCUS BLVD

Matrix:

Soil_Vapor 48,TO-15

Anaytical Method: Analytical Date:

09/15/09 19:48

Analyst:

AJ

Date Collected:

09/09/09 16:50

Date Received:

09/11/09

Field Prep:

	ppbV Results RDL		ug/m3 Results RDL			in the second	Dilution Factor	
Parameter						Qualifier		
Volatile Organics in Air (Low Level) - Ma	ansfield Lab)				· · · · .		
1,1,1-Trichloroethane	40.1	0.200	-	219	1.09		1	
1,1,2,2-Tetrachloroethane	ND	0.200	•	ND	1.37		1 .	
1,1,2-Trichloroethane	ND	0.200	٠.	ND	1.09	•	1	
1,1-Dichloroethane	2.40	0.200		9.71	0.809		1	
1,1-Dichloroethene	1.06	0.200		4.22	0.792		. 1	
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48		1	
1,2,4-Trimethylbenzene	ND	0.200		ND	0.982		1	
1,2-Dibromoethane	ND	0.200	•	ND	1.54 .		1	
1,2-Dichlorobenzene	ND	0.200		ND	1.20		. 1 .	
1,2-Dichloroethane	ND	0.200		ND .	0.809		1	
,2-Dichloropropane	ND	0.200		ND	0.924		1	
1,3,5-Trimethybenzene	ND	0.200		ND	0.982		1	
,3-Butadiene	.ND	0.200		ND	0.442		1	
3-Dichlorobenzene	. ND	0.200		ND ,	1.20		1	
1,4-Dichlorobenzene	ND	0.200		ND	1.20		1	
1,4-Dioxane	ND	0.200		ND	0.720		1	
2,2,4-Trimethylpentane	ND	0.200	• •	ND .	0.934	•	1	
2-Butanone	0.223	0.200		0.657	0.589		1 :	
-Hexanone	ND	0.200		ND	0.819		1 .	
-Chloropropene	ND	0.200		ND	0.626		1	
-Ethyltoluene	ND .	0.200		ND	0.982	•	1	
cetone	5.75	1.00		13.6	2.37		' 1'	
Benzene	ND	0.200		ND	0.638	•	1	
Benzyl chloride	ND	0.200		ND	1.03			
dromodichloromethane	ND	0.200		ND	1.03	•	. 1	
		0.200		י אטי	1.54		1	

Project Name:

COMPUTER CIRCUITS

Project Number:

TED0001

Lab Number:

L0912778

Report Date:

09/16/09

SAMPLE RESULTS

Lab ID:

L0912778-04

Client ID:

EFFLUENT

Sample Location:

145 MARCUS BLVD

Date Collected:

09/09/09 16:50

Date Received:

09/11/09

Field Prep:

	ppbV Results RDL		ug/m	3		Dilution
Parameter			Results RDL		Qualifier	Factor
Volatile Organics in Air (Low Level) - N	lansfield Lab			•	-	
Bromoform	ND	0.200	.ND	2.06	•	1 .
Bromomethane	ND	0.200	ND	0.776		1
Carbon disulfide	ND	0.200	ND	0.622		1
Carbon tetrachloride	ND	. 0.200	ND	1.26		1 1
Chlorobenzene	ND	0.200	ND	0.920	*	, 1
Chloroethane	ND	0.200	. ND	0.527	•	1
Chloroform	0.762	0.200	3.72	0.976		1
Chloromethane	0.298	0.200	0.615	0.413		. 1
is-1,2-Dichloroethene	3.59	0.200	14.2	0.792		1
is-1,3-Dichloropropene	ND .	0.200	, ND	0.907	٠.	1.
yclohexane	ND	0.200	ND	0.688		1 ;
ibromochloromethane	ND	0.200	ND	1.70		1
ichlorodifluoromethane	0.507	0.200	2.50	0.988		1
thanol	27.5	2.50	51.7	4.71	٠.	1
thyl Acetate	ND	0.500	ND	1.80		1
thylbenzene	ND	0.200	ND	0.868		1
reon-113	30.9	0.200	236	1.53		1
reon-114	, ND	0.200	ND	1.40		1
exachlorobutadiene	ND	0.200	ND	2.13		1
opropanol	21.3	0.500	52.2	1.23		1
ethylene chloride	0.984	0.500	3.42	1.74	•	1
Methyl-2-pentanone	ND	0.200	ND	0.819		1
lethyl tert butyl ether	ND	0.200	ND	0.720		1 .
m-Xylene	ND ,	0.400	ND	1.74		1
Xylene	ND	0.200	· ND	0.868		i'.
eptane	ND (0.200	ND	0.819		1
Hexane	ND .	0.200	ND	0.704		1
ropylene	0.254	0.200	0.437	0.344		, 1

Project Name:

COMPUTER CIRCUITS

Project Number:

TED0001

Lab Number:

L0912778

Report Date:

09/16/09

SAMPLE RESULTS

Lab ID:

L0912778-04

Client ID:

EFFLUENT

Sample Location:

145 MARCUS BLVD

Date Collected:

09/09/09 16:50

Date Received:

09/11/09

Field Prep:

•					. тор.	Trot opcomed	
	ppb\	/ : ·	ug/m	3	,	Dilution	
Parameter	Results	RDL ^J	Results	RDL	Qualifier	Factor	
Volatile Organics in Air (Low Level) - I	Mansfield Lab	,			,		
Styrene	ND	0.200	, ND	0.851		1	
Tetrachloroethene	ND	0.200	, ND	1.36		1 '	
Tetrahydrofuran	· ND ·	0.200	ND	0.589		, 1	-
Toluene	ND	0.200	ND	0.753		1	
trans-1,2-Dichloroethene	0.651	0.200	2.58	0.792		1 .	
rans-1,3-Dichloropropene	ND	0.200	ND	0.907	. :	1	
Trichloroethene	30.4	0.200	163	1.07		1	
Trichlorofluoromethane	0.417	0.200	2.34	1.12		· 1	
Vinyl acetate	ND.	0.200	ND	0.704		1	
Vinyl bromide	ND	0.200	ND	0.874		1	
Vinyl chloride	ND	0.200	ND ·	0.511		1 .	

Project Name:

COMPUTER CIRCUITS

Project Number: TED0001

Lab Number:

L0912778

Report Date:

09/16/09

Method Blank Analysis Batch Quality Control

Analytical Method:

48,TO-15

Analytical Date:

09/15/09 13:41

· · · · · · · · · · · · · · · · · · ·						•		
Parameter		ppbV		ug/m3		,	Dilution	
		Results	RDL	Results	RDL	Qualifier	Factor	
Volatile Organics in Air (Lo	ow Level) -	Mansfield Lab	for sample(s):	01-04 Batch:	WG3	79793-4		
1,1,1-Trichloroethane	•	ND	0.200	ND	1.09		1	
1,1,2,2-Tetrachloroethane		ND	0.200	ND .	1.37	•	. 1	
1,1,2-Trichloroethane		ND	0.200	ND ·	1.09		1	
,1-Dichloroethane		. ND ,	0.200	ND	0.809		.1	
,1-Dichloroethene		ND	0.200	ND	0.792		1	
,2,4-Trichlorobenzene	·	ND	0.200	ND	1.48		1	
,2,4-Trimethylbenzene		ND	0.200	ND	0.982		1	
,2-Dibromoethane	•	· ND	0.200	ND	1.54	•	1	
,2-Dichlorobenzene	• •	ND	0.200	ND	1.20		1	
,2-Dichloroethane	•	ND	0.200	ND	0.809		1	
2-Dichloropropane		ND	0.200	. ND .	0.924		· 1	
3,5-Trimethybenzene		ND	0.200	ND	0.982	•	1	
3-Butadiene		ND	0.200	ND	0.442	•	1	
3-Dichlorobenzene		ND	0.200	ND .	1.20	•	1	
4-Dichlorobenzene		ND :	0.200	ND	1.20		. 1	
4-Dioxane		ND	0.200	ND	0.720		1	
,2,4-Trimethylpentane		ND.	0.200	ND	0.934	1 - 4	1	
Butanone		ND	0.200	ND	0.589		1	
-Hexanone		ND	0.200	ND .	0.819		1	
Chloropropene		ND	0.200	ND .	0.626		. 1	
Ethyltoluene		ND	0.200	ND	0.982		1	
cetone		ND	1.00	ND	2.37		1	
enzene		ND	0.200	ND :	0.638		1	
enzyl chloride		ND	0.200	ND .	1.03		1	
romodichloromethane		·ND	0.200	ND	1.34	,		
		,110	0.200	140	1.04		1	

Project Name:

COMPUTER CIRCUITS

Project Number: TED0001

Lab Number:

L0912778

Report Date:

09/16/09

Method Blank Analysis Batch Quality Control

Analytical Method:

48,TO-15

Analytical Date:

09/15/09 13:41

		•		•		,,		
		ppbV	<u>.</u>	ug/m3		•	Dilution	
Parameter		Results	RDL	Results	RDL	Qualifier	Factor	
Volatile Organics in Air	(Low Level) -	Mansfield Lab	for sample(s):	01-04 Batch:	WG37	9793-4		
Bromoform		ND	0.200	ND	2.06		í	
Bromomethane		ND	0.200	ND	0:776		1	
Carbon disulfide		ND	0.200	ND	0.622		1 ,	
Carbon tetrachloride		ND	0.200	ND	1.26		1 '	
Chlorobenzene		ND	0.200	ND	0.920		1	
Chloroethane		ND	. 0.200	ND	0.527		· · 1	
Chloroform		ND	0.200	ND	.0.976		1	
Chloromethane		ND	0.200	ND	0.413		1	
cis-1,2-Dichloroethene	•	, ND	0.200	· ND	0.792	*	1	
cis-1,3-Dichloropropene	•	ND	0.200	ND	0.907		1	
Cyclohexane	•	ND	0.200	ND	0.688	,	1.	
Dibromochloromethane		ND ·	0.200	ND	1.70	•	1	
Dichlorodifluoromethane '		ND	0.200	ND	0.988		1	
Ethanol		ND	2.50	ND	4.71		. 1	
Ethyl Acetate	,	ND	0.500	ND	1.80	*	1	
Ethylbenzene	:	ND	0.200	ND	0.868		1	
Freon-113		ND	0.200	ND	1.53	•	1.	
Freon-114		ND	0.200	ND	1.40		1.	
Hexachlorobutadiene	•	ND	0.200	ND	2.13		1	
Isopropanol		ND	0.500	ND	1,23		1	
Methylene chloride		ŅD	0.500	ND.	1.74		1	
4-Methyl-2-pentanone	•	ND	0.200	ND	0.819		. 1	
Methyl tert butyl ether		ND	0.200	ND	0.720		1	
o/m-Xylene		ND	0.400	ND	1.74		1	
o-Xylene		ND	0.200	ND	0.868	• •	1	
			*					

Project Name:

COMPUTER CIRCUITS

Project Number: TED0001

Lab Number:

L0912778

Report Date:

09/16/09

Method Blank Analysis Batch Quality Control

Analytical Method:

48,TO-15

Analytical Date:

09/15/09 13:41

	ppbV	· .	ug/m3			Dilution
Parameter	Results	RDL	Results	RDL	Qualifier	Factor
Volatile Organics in Air (Low Level) -	Mansfield Lab	for sample(s):	01-04 Batch	: WG379	793-4	
Heptane	ND	0.200	ND	0.819		1
n-Hexane	ND	0.200	ND	0.704 .		1
Propylene	ND	0.200	ND	0.344		1.
Styrene	ND	0.200	ND	0.851		1
Tetrachloroethene	ND	0.200	ND	1.36		•
Tetrahydrofuran	ND	0.200	ND : A	0.589		'
Foluene .	ND	0.200	ND	0.753		•
rans-1,2-Dichloroethene	ND	0.200	ND	0.792		' *
rans-1,3-Dichloropropene	ND	0.200	ND	0.907		
richloroethene	ND	0.200	ND	1.07		l 4
richlorofluoromethane	ND	0.200	ND	1.12		1
/inyl acetate	ND	0.200	ND			1
inyl bromide	ND	0.200	•	0.704	•	1
inyl chloride	, ND	0.200	ND ND	0.874	•	1

Project Name:

COMPUTER CIRCUITS

Project Number: TED0001

Lab Number:

L0912778

Report Date:

09/16/09

Method Blank Analysis Batch Quality Control

Analytical Method:

48,TO-15-SIM

Analytical Date:

09/15/09 13:41

	ppbV		ug/m3	I .		Dilution
Parameter	Results	RDL	Results	RDL	Qualifier	Factor
Volatile Organics in Air by SIM - Ma	ansfield Lab for s	ample(s): 0	1 Batch: WG	379795-4		
Trichloroethene	ND	0.020	ND	0.107	ı	1

COMPUTER CIRCUITS

Project Number: TED0001

Project Name:

ge 22 of 36

Lab Number:

L0912778

Report Date:

rameter			LCS %Recovery	· %	LCSD Recove	ry	%Recovery Limits		RPD	RPD Limits
platile Organics in Air	(Low Level)	- Mansfield	Lab Assoc	iated sample(s):	01-04	Batch:	WG379793-3			
1,1,1-Trichloroethane		•	104		·		70-130		-	
1,1,2,2-Tetrachloroethan	е		101		· .		70-130		·	
1,1,2-Trichloroethane			104		-		70-130		•	
1,1-Dichloroethane			114	A.	٠.		70-130		, - -	
1,1-Dichloroethene		*	106		-	,	70-130		· .	
1,2,4-Trichlorobenzene			99		*S	•	70-130		-	
1,2,4-Trimethylbenzene			105		- ,		70-130			`.
1,2-Dibromoethane	•		93		<u>.</u>		70-130		-	
1,2-Dichlorobenzene			105				70-130	; .	* -	
1,2-Dichloroethane			116		-		70-130		- ·	
1,2-Dichloropropane			100		-		70-130		· -	
1,3,5-Trimethylbenzene			102		• -		70-130		_	
1,3-Butadiene			98		· -		70-130		_	
1,3-Dichlorobenzene			105		-	•	70-130		<u>.</u>	
1,4-Dichlorobenzene			106		· <u>2</u>		70-130			·
1,4-Dioxane			102		•		70-130		-	
2,2,4-Trimethylpentane	<i>y-</i>		94				70-130		• · .	
2-Butanone			106	•			70-130		'	
2-Hexanone		•	104				70-130		-	
3-Chloropropene			100		- ·		70-130		. -	
4-Ethyltoluene	•		102		· -	•	70-130		-	

roject Name:

COMPUTER CIRCUITS

roject Number:

TED0001

Lab Number:

L0912778

Report Date:

ameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
latile Organics in Air (Low Level) - Mans	field Lab Associated samp	le(s): 01-04 Batch:	WG379793-3		
Acetone	98	•	70-130		
Benzene	97		70-130		•
Benzyl chloride	99	- -	70-130	- .	
Bromodichloromethane	99	-	70-130	•	
Bromoform	101	. ••	70-130	· ·	
Bromomethane	86	-	70-130	- <u>-</u> .	
Carbon disulfide	95	- -	70-130		
Carbon tetrachloride	106	-	70-130		
Chlorobenzene	101	- :	70-130	-	
Chloroethane	98	-	70-130	-	
Chloroform	108	- ·	70-130	•	x .
Chloromethane	98	- •	70-130	•	
cis-1,2-Dichloroethene	104	•	70-130	<u>-</u>	
cis-1,3-Dichloropropene	89	-	70-130	• •	
Cyclohexane	90	•	70-130	<u>-</u> - ,	ating.
Dibromochloromethane	96	• •	70-130		
Dichlorodifluoromethane	110	-	70-130	-	
Ethyl Alcohol	106	<u>.</u>	70-130	· -	
Ethyl Acetate	106		70-130	-	
Ethylbenzene	102	· · · · · · · · · · · · · · · · · · ·	70-130	- -	
1,1,2-Trichloro-1,2,2-Trifluoroethane	112	-	70-130	· · · · · · · · · · · · · · · · · · ·	

oject Name:

COMPUTER CIRCUITS

oject Number: TEI

TED0001

Lab Number:

L0912778

Report Date:

ameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
atile Organics in Air (Low Level)	Mansfield Lab Associated sampl	e(s): 01-04 Batch:	WG379793-3		
1,2-Dichloro-1,1,2,2-tetrafluoroethane	104	*	70-130	-	
Hexachlorobutadiene	104	<u>-</u>	70-130	•	
iso-Propyl Alcohol	103	-	70-130		
Methylene chloride	101	- -	70-130	-	
4-Methyl-2-pentanone	107	<u>.</u>	70-130		
Methyl tert butyl ether	109		70-130	•	
p/m-Xylene	102	<u>-</u>	70-130	-	
o-Xylene	103	·- ·	70-130	- -	
Heptane	89	-	70-130	• • • · ·	
n-Hexane	91		70-130	•	
Propylene	84		70-130	<u>.</u>	
Styrene	101	· •	70-130		
Tetrachloroethene	96	- -	70-130	• •	
Tetrahydrofuran	111	•	70-130	.	
Foluene .	98		70-130		
rans-1,2-Dichloroethene	103	•	70-130	• • • •	
rans-1,3-Dichloropropene	74	-	70-130	 -	
Frichloroethene	99		70-130	<u>-</u> .	
Frichlorofluoromethane	114		70-130	•	
/inyl acetate	115	• •	70-130	- -	
/inyl bromide	100	· •	70-130	•	

roject Name:

COMPUTER CIRCUITS

roject Number: TED

TED0001

uality Control Lab Number:

Report Date:

L0912778 09/16/09

ameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
atile Organics in Air (Low Level) - I	Mansfield Lab Associated sar	mple(s): 01-04 Batcl	n: WG379793-3		
Vinyl chloride	100		70-130	_	

atile Organics in Air by SIM - Mansfield Lab Associated sample(s): 01 Batch: WG379795-3

Trichloroethene

113

70-130

Surrogate	LCS %Recovery Qualifier	LCSD %Recovery Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	117		70-130	
Toluene-d8	109		70-130	
Bromofluorobenzene	115		70-130	

Project Name: Project Number: **COMPUTER CIRCUITS**

TED0001

Lab Duplicate Analysis Batch Quality Control

Lab Number:

L0912778

Report Date:

neter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
e Organics in Air (Low Level) - Mansfield Lab	Associated sample(s): 01-04	QC Batch ID: WG379	9793-5	QC Sample: L0912778-01	Client ID: AS-2
1-Trichloroethane	. ND	ND.	ppbV	NC NC	25
2,2-Tetrachloroethane	ND	ND	ppbV	NC ·	25
2-Trichloroethane	ND	ND .	ppbV	NC	25
Dichloroethane	ND .	ND	ppbV	NC	25
Dichloroethene	ND	ND	ppbV	NC	25
4-Trichlorobenzene	ND	ND	ppbV	NC	25
4-Trimethylbenzene	0.281	0.268	ppbV	5	25
Dibromoethane	ND	ND	ppbV	NC	25
Dichlorobenzene	ND	ND ·	ppbV	NC	25
Dichloroethane	ND	ND .	ppbV	NC	25
Dichloropropane	ND	ND ·	ppbV	NC	25
5-Trimethybenzene	ND	ND	ppbV	NC	25
Butadiene	ND	ND	ppbV	NC	25
Dichlorobenzene	ND .	ND	ppbV	NC	25
Dichlorobenzene	ND	ND	ppbV	NC	25
Dioxane	ND	ND	ppbV	NC	25
1-Trimethylpentane	ND	ND	ppbV	NC	25
itanone	1.57	1.43	ppbV ·	9	25
∍xanone	ND	ND	ppbV	NC	25

Lab Duplicate Analysis
Batch Quality Control

Lab Number:

L0912778

Report Date:

09/16/09

Project Name: COMPUTER CIRCUITS

Project Number: TED0001

rameter			Native Sample		Duplicate Sar	mple Unit	s R	PD	RPD Limit	S
latile Organics in Air (I	Low Level)	- Mansfield Lab	Associated sample(s):	01-04	QC Batch ID:	WG379793-5	QC Sample:			
3-Chloropropene			ND		ND .	ppb\		IC.	25	
4-Ethyltoluene	• • • •		ND		ND	ppb\	/	IC	25	
Acetone	•		17.0		16.1	ppb\	/	5	25	
Benzene .			0.229		0.238	ppb\	,	4	25	
Benzyl chloride			, ND		ND	ppb\	/,	IC .	25	
Bromodichloromethane			ND		ND	ppb\	/ N	ıc	25	-
Bromoform			ND		ND	ppb\	<i>!</i> N	IC	25	
Bromomethane	•		ND .		ND	ppb\	, N	c	25	
Carbon disulfide		·	ND		ND	•	,	C	25	
Carbon tetrachloride			ND		ND	ppb\	, N	С	25	
Chlorobenzene			ND		ND	ppb\	' N	C	. 25	
Chloroethane			ND		ND	ppbV	' N	C .	25	
Chloroform	•		ND		ND	ppbV	. N	C	25	
Chloromethane			0.661		0.621	ppbV	'		25	
is-1,2-Dichloroethene			ND		ND	ppbV	N.	С	25	
is-1,3-Dichloropropene		•	ND		ND	ppbV	N	С	25	
Cyclohexane			ND	•	ND	ppbV	N	C.	25	
Dibromochloromethane			ND		ND	ppbV	.N	С	25	
Dichlorodifluoromethane			0.594		0.597	ppbV	1		25	

COMPUTER CIRCUITS

Project Number: TED0001

Lab Duplicate Analysis Batch Quality Control

Lab Number:

L0912778

Report Date:

meter			Native Sample		Duplicate Sar	mple Units	s RPI) .	RPD Limits	
ile Organics in Ai	r (Low Level)	- Mansfield Lab	Associated sample(s)	: 01-04	QC Batch ID:	WG379793-5	QC Sample: L0	912778-01	Client ID: A	S-2
hanol		•	48.3		47.5	ppbV	2		25	
hyl Acetate		•	ND	•	ND	ppbV	NC		25	
hylbenzene			0.213		ND	ppbV	NC		25	
eon-113			0.586		0.540	ppbV	. 8		25	
eon-114			ND		ND -	ppbV	NC	*	25	
xachlorobutadiene	-		ND		ND	ppbV	NC		25	
ppropanol	•		84.4		83.7	ppbV	1.		25	
ethylene chloride			1.33		1.38	ppbV	4		25	
Methyl-2-pentanone			0.281		ND	ppbV	·NC		25	
ethyl tert butyl ether			ND		ND	ppbV	NC.		25	
n-Xylene			0.466		0.429	ppbV	8		25	
(ylene			ND		ND	ppbV	· NC		25	e e
ptane			0.627	•	0.601	ppbV	4		25	
Hexane			ND,	•	ND	· ppbV	NC		25	
opylene			0.300		0.326	ppbV	8		25	
rene			ND		ND	ppbV	NC:		25	
trachloroethene		.•	ND ·		ND	ppbV	NC		25	
trahydrofuran			ND		ND	ppbV	NC		25	
luene			1.42		1.43	ppbV	1		25	

Project Name: Project Number:

COMPUTER CIRCUITS

TED0001

Lab Duplicate Analysis
Batch Quality Control

Lab Number:

L0912778

Report Date:

meter	Native Sample		Duplicate Sample	Units	RPD	RPD Limits
ile Organics in Air (Low Level) - Mansfield Lab A	associated sample(s): (01-04	QC Batch ID: WG3	79793 . 5	QC Sample: L0912778-01	Client ID: AS-2
ns-1,2-Dichloroethene	ND		ND .	ppbV	NC	25
ns-1,3-Dichloropropene	ND		ND	ppbV	NC	25
chloroethene	0.267		0.297	ppbV	11	25
chlorofluoromethane	0.550		0.520	ppbV	6	25
nyl acetate	.ND		ND	ppbV	NC	25
yl bromide	ND		ND	ppbV	NC	25
yl chloride	ND		ND	ppbV	NC	25
		•				
ile Organics in Air by SIM - Mansfield Lab Assoc	siated sample(s): 01 (QC Ba	tch ID: WG379795-5	QC Sar	mple: L0912778-01 Client	ID: AS-2
chloroethene	0.270		0.272	ppbV	1	25

COMPUTER CIRCUITS

Lab Number: L0912778

Project Number: TED0001

Project Name:

Report Date: 09/16/09

Canister and Flow Controller Information

Samplenum	Client ID	Media ID	Media Type	Cleaning Batch ID	Initial Pressure (in. Hg)	Pressure on Receipt (in. Hg)		Flow In mL/min	% RSD
L0912778-01	AS-2	0455	#16 AMB		-	-	4.9	4.8	2
L0912778-01	AS-2	475	2.7L Can	L0911917	-29.6	-3.1		-	-
L0912778-02	INFLUENT	0454	#90 SV		-	+	19.6	20.0	2
L0912778-02	INFLUENT	400	2.7L Can	L0911917	-29.6	-6.8	•	•	-
L0912778-03	GAC MIDPOINT	0337	#30 AMB	,	-	-	19.7	20.8	5
L0912778-03	GAC MIDPOINT	254	2.7L Can	L0911917	-29.6	-7.1		-	-
L0912778-04	EFFLUENT	0248	#16 AMB		-	<u>.</u>	19.3	20.0	4 .
L0912778-04	EFFLUENT	391	2.7L Can	10911829	-29.6	-9.3	-	-	

COMPUTER CIRCUITS

Project Number: TED0001

Lab Number: L0912778

Report Date: 09/16/09

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Cooler

Custody Seal

N/A

Absent

Container Info	ormation		. ,	Temp			
Container ID	Container Type	Cooler	рН		Pres	Seal	Analysis
L0912778-01A	Canister - 2.7 Liter	N/A	N/A		NA	Absent	TO15-LL(30),TO15-SIM(30)
L0912778-02A	Canister - 2.7 Liter	N/A	N/A		NA	Absent	TO15-LL(30)
L0912778-03A	Canister - 2.7 Liter	N/A	N/A		NA	Absent	TO15-LL(30)
L0912778-04A	Canister - 2.7 Liter	N/A	N/A		NA	Absent	TO15-LL(30)

COMPUTER CIRCUITS

Project Number:

TED0001

Lab Number:

L0912778

Report Date:

09/16/09

GLOSSARY

Acronyms

EPA Environmental Protection Agency.

LCS Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD Laboratory Control Sample Duplicate: Refer to LCS.

MS • Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.

MSD Matrix Spike Sample Duplicate: Refer to MS.

NA Not Applicable.

NC Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

ND Not detected at the reported detection limit for the sample.

NI · Not Ignitable

RDL Reported Detection Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than five times (5x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- The quality control sample exceeds the associated acceptance criteria. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RDL. (Metals only.)
- R Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).

Report Format:

Data Usability Report

COMPUTER CIRCUITS

Project Number:

TED0001

Lab Number:

L0912778

Report Date:

09/16/09

REFERENCES

Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air. Second Edition. EPA/625/R-96/010b, January 1999.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Woods Hole Labs shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Woods Hole Labs.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certificate/Approval Program Summary

Last revised June 17, 2009 - Mansfield Facility

The following list includes only those analytes/methods for which certification/approval is currently held. For a complete listing of analytes for the referenced methods, please contact your Alpha Customer Service Representative.

Connecticut Department of Public Health Certificate/Lab ID: PH-0141.

Wastewater/Non-Potable Water (Inorganic Parameters: pH, Turbidity, Conductivity, Alkalinity, Aluminum, Antimony, Arsenic, Barium, Beryllium, Boron, Cadmium, Calcium, Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Strontium, Thallium, Tin, Vanadium, Zinc, Total Residue (Solids), Total Suspended Solids (non-filterable), Total Cyanide. Organic Parameters: PCBs, Organochlorine Pesticides, Technical Chlordane, Toxaphene, Acid Extractables, Benzidines, Phthalate Esters, Nitrosamines, Nitroaromatics & Isophorone, PAHs, Haloethers, Chlorinated Hydrocarbons, Volatile Organics.)

Solid Waste/Soil (Inorganic Parameters: pH, Aluminum, Antimony, Arsenic, Barium, Beryllium, Cadmium, Calcium, Chromium, Hexavalent Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Thallium, Vanadium, Zinc, Total Organic Carbon, Total Cyanide, Corrosivity, TCLP 1311. Organic Parameters: PCBs, Organochlorine Pesticides, Technical Chlordane, Toxaphene, Volatile Organics, Acid Extractables, Benzidines, Phthalates, Nitrosamines, Nitroaromatics & Cyclic Ketones, PAHs, Haloethers, Chlorinated Hydrocarbons.)

Florida Department of Health Certificate/Lab ID: E87814. NELAP Accredited.

Non-Potable Water (Inorganic Parameters: SM2320B, 4500NH3-F, EPA 120.1, SM2510B, 2340B, EPA 245.1, EPA 150.1, EPA 160.2, SM2540D, EPA 335.2, 420.1, SM2540G, EPA 180.1. Organic Parameters: EPA 625, 608.)

Solid & Chemical Materials (Inorganic Parameters: 6020, 7470, 7471, 9045, 9014. Organic Parameters: EPA 8260, 8270, 8082, 8081.)

Air & Emissions (EPA TO-15.)

Louisiana Department of Environmental Quality Certificate/Lab ID: 03090. NELAP Accredited.

Non-Potable Water (Inorganic Parameters: EPA 120.1, 150.1, 160.2, 180.1, 200.8, 245.1, 310.1, 335.2, 608, 625, 1631, 3010, 3015, 3020, 6020, 9010, 9014, 9040, SM2320B, 2510B, 2540D, 2540G, 4500CN-E, 4500H-B, Organic Parameters: EPA 3510, 3580, 3630, 3640, 3660, 3665, 5030, 8015 (mod), 3570, 8081, 8082, 8260, 8270,

Solid & Chemical Materials (<u>Inorganic Parameters</u>: 6020, 7196, 7470, 7471, 7474, 9010, 9014, 9040, 9045, 9060. <u>Organic Parameters</u>: EPA 8015 (mod), EPA 3570, 1311, 3050, 3051, 3060, 3580, 3630, 3640, 3660, 3665, 5035, 8081, 8082, 8260, 8270.)

Biological Tissue (Inorganic Parameters: EPA 6020. Organic Parameters: EPA 3570, 3510, 3610, 3630, 3640, 8270.)

Maine Department of Human Services Certificate/Lab ID: MA0030.

Wastewater (Inorganic Parameters: EPA 120.1, 300.0, SM 2320, 2510B, 2540C, 2540D, EPA 245.1. Organic Parameters: 608, 624.)

Massachusetts Department of Environmental Protection Certificate/Lab ID: M-MA030.

Non-Potable Water (Inorganic Parameters: SM4500H+B. Organic Parameters: EPA 624.)

New Hampshire Department of Environmental Services Certificate/Lab ID: 2206. NELAP Accredited.

Non-Potable Water (Inorganic Parameters: EPA 200.8, 245.1, 1631E, 120.1, 150.1, 180.1, 310.1, 335.2, 160.2, SM2540D, 2540G, 4500CN-E, 4500H+B, 2320B, 2510B. Organic Parameters: EPA 625, 608.)

New Jersey Department of Environmental Protection Certificate/Lab ID: MA015. NELAP Accredited.

Non-Potable Water (Inorganic Parameters: SW-846 1312, 3010, 3020A, 3015, 6020, SM2320B, EPA 200.8, SM2540C, 2540D, 2540G, EPA 120.1, SM2510B, EPA 180.1, 245.1, 1631E, SW-846 9040B, 6020, 9010B, 9014 Organic Parameters: EPA 608, 625, SW-846 3510C, 3580A, 5030B, 3035L, 5035H, 3630C, 3640A, 3660B, 3665A, 8081A, 8082 8260B, 8270C)

Solid & Chemical Materials (Inorganic Parameters: SW-846 6020, 9010B, 9014, 1311, 1312, 3050B, 3051, 3060A, 7196A, 7470A, 7471A, 9045C, 9060. Organic Parameters: SW-846 3580A, 5030B, 3035L, 5035H, 3630C, 3640A, 3660B, 3665A, 8081A, 8082, 8260B, 8270C, 3570, 8015B.)

Atmospheric Organic Parameters (EPA TO-15)

Biological Tissue (Inorganic Parameters: SW-846 6020 Organic Parameters: SW-846 8270C, 3510C, 3570, 3610B, 3630C, 3640A)

New York Department of Health Certificate/Lab ID: 11627. NELAP Accredited.

Non-Potable Water (Inorganic Parameters: EPA 310.1, SM2320B, EPA 365.2, 160.1, EPA 160.2, SM2540D, EPA 200.8, 6020, 1631E, 245.1, 335.2, 9014, 150.1, 9040B, 120.1, SM2510B, EPA 376.2, 180.1, 9010B. Organic Parameters: EPA 624, 8260B, 8270C, 608, 8081A, 625, 8082, 3510C, 3511, 5030B.)

Solid & Hazardous Waste (Inorganic Parameters: EPA 9040B, 9045C, SW-846 Ch7 Sec 7.3, EPA 6020, 7196A, 7471A, 7474, 9014, 9040B, 9045C, 9010B. Organic Parameters: EPA 8260B, 8270C, 8081A, DRO 8015B, 8082, 1311, 3050B, 3580, 3050B, 3035, 3570, 3051, 5035, 5030B.)

Air & Emissions (EPA TO-15.)

Pennsylvania Department of Environmental Protection Certificate/Lab ID: 68-02089. NELAP Accredited.

Non-Potable Water (Organic Parameters: EPA 5030B, EPA 8260)

Rhode Island Department of Health Certificate/Lab ID: LAO00299. NELAP Accredited via LA-DEQ.

Refer to MA-DEP Certificate for Non-Potable Water.

Refer to LA-DEQ Certificate for Non-Potable Water.

Texas Commission of Environmental Quality Certificate/Lab ID: T104704419-08-TX. NELAP Accredited.

Solid & Chemical Materials (Inorganic Parameters: EPA 6020, 7471. Organic Parameters: EPA 8015, 8270.)

U.S. Army Corps of Engineers

		ALPHA	CHAIN OF C	AIR AI	VALY	SIS	P	AGE	OF	Date R	kec'd in L	ab:				ALF	РНА.	Job #	LC	19127	78
* •		320 Forbes Blvd, M		33100)	Project	Informat	ion			Repo	rt Inforn	ation -	Data I	Deliveral	oles	Bill	ing In	form	ation		
ė k	4	TEL: 508-822-9300	FAX: 508-822-328	8	Project N	ame: C	enpter (CIRCUT	TS	Q FA				·		🗓 Sa	me as	Client	info PO	#:	
	17:1	Client Informatio	n		Project L		15 Mar			725/AD											
	09160917:14	Client: PWGC			Project #		EDOOG				(Default bas	ed on Reg	ılatory Cri	teria Indicate	d)						
. 1	091	Address: (30 3	Johnson Aue		Project M		Kris A		`		Other Ford IAIL (stand		report)	<u>:</u>	<u>-</u>	Reg	gulato	ry Re	quireme	nts/Report	Lim
		Bohan	ITH YN,		ALPHA C		<u></u>		1		ditional De			,		State	e/Fed	P	rogram	Criteria	a .
		Phone: 631	F84 6353		Turn-A	round Tir	ne			Repor	t to: (if differe	nt than Projec	t Manager)					-		<u> </u>	
		Fax: 631	584 8705		Standa		DUCL														
		Email: hon	usma pwas	ser.can	Sianda	ių u	I RUSH (only a	confirmed if pre-e	pproved!)								AN	ALYS	is		
		These samples have	e been previously analy	zed by Alpha	Date Du	e:		Time:			· '.					/7		7	///		
			pecific Requirem			1.0	~			_ 					/	/ /	/	1.1	/ / /		٠.
		MIE	Analysis For	TCE	in Soup	e As	<u>ا</u> کے ا		•	•.					0.15	?//		60	//		
i				All C	olun	nns E	Below	/ Mu	st Be	Fill	ed C	ut			100	Mis	/ /8		0.0	•	
		ALPHA Lab ID (Lab Use Only)	Sample I	D .	Date		End Time	Initial	Final Vacuum	Sample Matrix*	Sampler Initials	s Can Size:	I D Can	I D - Flow Controller	70.14 70.14	70.15 SIM	FIXED	E 3	-	Comments (i.	e. PII
		12778-1	A5-2		9/9/04	8:10	15,20	-30	-5	AA	TM	2.7	1	0453	Х					<u> </u>	
		2	Influent	_	9/9/09	i5:10	1650	-30	-6	5V	ME	27	400	ouse	X						-,
	•	3	GAC MIJA	. 1	9/9/09	15:10	1650	-30	-9	5√	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	27	254	0337	X					·	•
		4	Effler	9.1		15:10	 	- 30	- 11	5V	W.		351	0248	1	-		+			 .
•		/	011(00)		1 701	107.0		"				2-7	24	: - 10		-		+	·		
	•			/												+	+	\dashv			
			/W//						<u> </u>					•	-	+	┿-	+1	,		
			- <i> }</i> /-			·		-			<u> </u>					_	\vdash	-	· ·		
					<u> </u>					•	·	<u> </u>	•		_			\dashv		· · · · · · · · · · · · · · · · · · ·	
																_				•	
		*SAMPLE	MATRIX CODE	S sv	l A = Ambien / = Soil Vap her = Please	or/Landfill ((Outdoor) Gas/SVE				C	ontainer	Туре		SO			1	completely.	clearly, legibly Samples can r	nat be
	. •				Relinquis	hed/By:		Dat	e/Time		Rece	ived By:	1/-		/ Pa	te/Tim	e:		clock will not	d turnaround ti start until any	amhi
				71-1		-/T.M.	2/9/	9/1/0	4 17:00	-		200	16			<u>)</u>	14	ノイ	guilies are re submitted ar Terms and C	esolved, All sa e subject to Alp	mple: pha's
		Form No: 101-02 (19-Jun-0	9)		Esa	all I		3////	50110	10/1	1		Ciu	H	9/	14/04	11 to		See reverse	side.	

ANALYTICAL REPORT

Lab Number:

L0918894

Client:

P. W. Grosser

630 Johnson Avenue

Suite 7

Bohemia, NY 11716

ATTN:

Thomas Melia

Project Name:

FORMER COMPUTER CIRCUITS

Project Number:

TED0001

Report Date:

01/05/10

Certifications & Approvals: MA (M-MA030), NY (11627), CT (PH-0141), NH (2206), NJ (MA015), RI (LAO00299), ME (MA0030), PA (Registration #68-02089), LA NELAC (03090), FL NELAC (E87814), US Army Corps of Engineers.

320 Forbes Boulevard, Mansfield, MA 02048-1806 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.alphalab.com

FORMER COMPUTER CIRCUITS

Project Number: TED0001

Lab Number:

L0918894

Report Date:

01/05/10

	Alpha Sample ID	Client ID	Location Sample	Collection Date/Time
L	.0918894-01	IA-1	145 MARCUS BLVD.	12/29/09 15:55
L	-0918894-02 [†]	IA-2	145 MARCUS BLVD.	12/29/09 15:55
L	.0918894-03	IA-3	145 MARCUS BLVD.	12/29/09 16:40
Ĺ	.0918894-04	IA-4	145 MARCUS BLVD.	12/29/09 15:55
L	.0918894-05	IA-5	145 MARCUS BLVD.	12/29/09 16:02
L	.0918894-06	IA-6	145 MARCUS BLVD.	12/29/09 16:40
L	.0918894-07	IA-7	145 MARCUS BLVD.	12/29/09 16:40
L	.0918894-08	IA-8	145 MARCUS BLVD.	12/29/09 16:40
L	.0918894-09	NORTH SYSTEM INFLUENT	145 MARCUS BLVD.	12/29/09 17:20
L	.0918894-10	SOUTH SYSTEM INFLUENT	145 MARCUS BLVD.	12/29/09 17:15

FORMER COMPUTER CIRCUITS

Project Number:

TED0001

Lab Number:

L0918894

Report Date:

01/05/10

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet all of the requirements of NELAC, for all NELAC accredited parameters. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

For additional information, please contact Client Services at 800-624-9220.

Volatile Organics in Air (Low Level)

L0918894-09 and -10: results for Acetone should be considered estimated due to co-elution with a non-target peak.

The WG395274-3 LCS recovery for Vinyl acetate (140%) is outside the 70%-130% acceptance limit. The LCS was within overall method allowances, therefore the analysis proceeded.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Kathle M. itsin

Title: Technical Director/Representative

Date: 01/05/10

AIR

Project Name:

FORMER COMPUTER CIRCUITS

Project Number:

TED0001

Lab Number:

L0918894

Report Date:

01/05/10

SAMPLE RESULTS

Lab ID:

L0918894-01

Client ID:

IA-1

Sample Location:

145 MARCUS BLVD.

Matrix:

Air

Anaytical Method:

48,TO-15

Analytical Date:

12/31/09 19:59

Analyst:

RY

Date Collected:

12/29/09 15:55

Date Received:

12/30/09

Field Prep:

	ppbV	,	ug/m:	3	Dilution
Parameter	Results	RDL	Results	RDL	Qualifier Factor
Volatile Organics in Air (Low Level) - M	ansfield Lab				
1,1,1-Trichloroethane	ND	0.200	ND	1.09	1
1,1,2,2-Tetrachloroethane	ND	0.200	ND	1.37	· · · · · · · · · · · · · · · · · · ·
,1,2-Trichloroethane	ND [‡]	0.200	ND	1.09	1
,1-Dichloroethane	ND	0.200	ND	0.809	1
,1-Dichloroethene	ND	0.200	ND	0.792	1
,2,4-Trichlorobenzene	ND	0.200	ND	1.48	. 1
,2,4-Trimethylbenzene	ND.	0.200	ND	0.982	1 · · · · · · · · · · · · · · · · · · ·
,2-Dibromoethane	ND	0.200	ND	1.54	. 1
,2-Dichlorobenzene	ND	0.200	ND	1.20	1
,2-Dichloroethane	ND '	0.200	ND .	0.809	1
,2-Dichloropropane	ND	0.200	ND	0.924	1
,3,5-Trimethybenzene	ND	0.200	ND	0.982	4
,3-Butadiene	ND	0.200	ND	0.442	1
,3-Dichlorobenzene	ND	0.200	ND	1.20	1
,4-Dichlorobenzene	ND	0.200	ND	1.20	1
,4-Dioxane	ND.	0.200	ND	0.720	. 1
,2,4-Trimethylpentane	ND	0.200	ND	0.934	1
-Butanone	0.455	0.200	1.34	0.589	1
-Hexanone	ND	0.200	ND	0.819	
-Chloropropene	ND	0.200	ND	0.626	1
Ethyltoluene	ND .	0.200	ND	0.982	1
cetone	5.11	1.00	12.1	2.37	1
enzene	ND	0.200	ND	0.638	√″ 1
enzyl chloride	ND	0.200	ND	1.03	
romodichloromethane	ND	0.200	ND	1.34	1

Project Name: Project Number: FORMER COMPUTER CIRCUITS

TED0001

Lab Number:

L0918894

Report Date:

01/05/10

SAMPLE RESULTS

Lab ID:

L0918894-01

Client ID:

Sample Location:

·IA-1

145 MARCUS BLVD.

Date Collected:

12/29/09 15:55

Date Received:

12/30/09

Field Prep:

	ppbV	•	ug/m3	3	•	Dilution	
Parameter	Results	RDL	Results	RDL	Qualifier	Factor	,
Volatile Organics in Air (Low Leve	l) - Mansfield Lab				,		
Bromoform	ND	0.200	ND	2.06		1	
Bromomethane	ND	0.200	ND	0.776	•	· ,	
Carbon disulfide	ND	0.200	ND	0.622		1	
Carbon tetrachloride	ND	0.200	ND ·	1.26	,	1 .	
Chlorobenzene	ND	0.200	ND	0.920		1	
Chloroethane	ND ·	0.200	ND.	0.527		· i	
Chloroform	ND	0.200	ND	0.976		· 1	
Chloromethane	0.605	0.200	1.25	0.413	•		
is-1,2-Dichloroethene	ND	0.200	ND	0.792		1	
s-1,3-Dichloropropene	ND	0.200	ND	0.907		1	
yclohexane	ND	0.200	ND	0.688	•	. 1	
ibromochloromethane	ND	0.200	ND	1.70		. 1	•
ichlorodifluoromethane	0.458	0.200	2.26	0.988	•	1	
thanol	26.2	2.50	49.3	4.71		1	
thyl Acetate	ND	0.500	ND	1.80		1	
thylbenzene	ND .	0.200	ND	0.868		1	
reon-113	ND	0.200	ND	1.53		1	
reon-114	ND	0.200	ND ND	1.40	•	.1	
exachlorobutadiene	ND	0.200	ND	2.13		. 1	
opropanol	27.2	0.500	66.7	1.23	٠	1	
ethylene chloride	ND ·	0.500	ND	1.74		. 1	
Methyl-2-pentanone	0.598	0.200	2.45	0.819	•	1 7	
ethyl tert butyl ether	ND	0.200	ND	0.720		1	-
m-Xylene	ND	0.400	ND	1.74		1	
Xylene	ND	0.200	ND	0.868		1	
eptane	0.345	0.200	1.41	0.819			
Hexane	ND	0.200	ND	0.704		1	
ropylene	0.236	0.200	0.406	0.344		1	
	0.200	0.200	0.400	0.344		T,	

Project Name:

FORMER COMPUTER CIRCUITS

Lab Number:

L0918894

Project Number: TED0001

Report Date:

01/05/10

SAMPLE RESULTS

Lab ID:

L0918894-01

Client ID: Sample Location:

IA-1

145 MARCUS BLVD.

Date Collected:

12/29/09 15:55

Date Received:

12/30/09

Field Prep:

	ppbV	<u>, </u>	ug/m	3		Dilution
Parameter	Results	RDL	Results	RDL	Qualifier	Factor
Volatile Organics in Air (Low Level) - M	ansfield Lab			ε		
Styrene	ND	0.200	ND	0.851		1
Tetrachloroethene	ND	0.200	ND ·	1.36		1
Tetrahydrofuran	ND	0.200	ND	0.589	•	1
Toluene	0.354	0.200	1.33	0.753	٠	1
trans-1,2-Dichloroethene	ND	0.200	ND	0.792		1 '
trans-1,3-Dichloropropene	ND	0.200	ND	0.907		1
Trichloroethene	ND	0.200	ND	1.07		1
Trichlorofluoromethane	0.267	0.200	1.50	1.12	,	1
Vinyl acetate	ND	0.200	ND	0.704		1
/inyl bromide	ND	0.200	ND	0.874		1
Vinyl chloride	ND	0.200	ND	0.511	•	1

Project Name:

FORMER COMPUTER CIRCUITS

Lab Number:

L0918894

Project Number:

TED0001

Report Date:

01/05/10

SAMPLE RESULTS

Lab ID:

L0918894-01

Date Collected:

12/29/09 15:55

Client ID:

IA-1

Sample Location:

145 MARCUS BLVD.

Date Received:

12/30/09

Air

Field Prep:

Not Specified

Matrix:

Anaytical Method: Analytical Date:

48,TO-15-SIM 12/31/09 19:59

Analyst:

RY

	ppbV	,	ug/m	3		Dilution
Parameter	Results	RDL	Results	RDL	Qualifier	Factor
Volatile Organics in Air by SIM -	Mansfield Lab					
Trichloroethene	ND	0.020	ND .	0.107		1

Project Name:

FORMER COMPUTER CIRCUITS

Project Number:

TED0001

Lab Number:

L0918894

Report Date:

01/05/10

SAMPLE RESULTS

Lab ID:

L0918894-02

Client ID:

IA-2

Sample Location:

145 MARCUS BLVD.

Matrix:

Air

Anaytical Method: Analytical Date: 48,TO-15 12/31/09 20:37

Analyst:

RY

Date Collected:

12/29/09 15:55

Date Received:

12/30/09

Field Prep:

	Vdqq		ug/m	13	Dift	Ition
Parameter	Results	RDL	Results	RDL		ctor
Volatile Organics in Air (Low Level) -	Mansfield Lab					
1,1,1-Trichloroethane	ND '	` 0.200	ND	1.09		1
1,1,2,2-Tetrachloroethane	ND	0.200	ND	1.37		1
1,1,2-Trichloroethane	ND .	0.200	ND	1.09		1 .
I,1-Dichloroethane	ND	0.200	ND	0.809		1
,1-Dichloroethene	ND	0.200	, ND	0.792		1
,2,4-Trichlorobenzene	ND	0.200	, ND	1.48		1
,2,4-Trimethylbenzene	ND	0.200	ND	0.982	. *	1
,2-Dibromoethane	ND	0.200	ND	1.54		1
,2-Dichlorobenzene	ND	0.200	ND	1.20		1
,2-Dichloroethane	, ND	0.200	ND	0.809		1
,2-Dichloropropane	ND	0.200	ND	0.924		1
,3,5-Trimethybenzene	ND	0.200	ND	0.982		1
,3-Butadiene	ND	0.200	ND	0.442	•	1
3-Dichlorobenzene	ND	0.200	ND	1.20		1
,4-Dichlorobenzene	ND	0.200	ND	1.20		1
,4-Dioxane	, ND	0.200	ND	0.720	•	1
,2,4-Trimethylpentane	ND	0.200	ND	0.934		1
-Butanone	0.432	0.200	1.27	0.589		1.
-Hexanone	ND	0.200	ND ·	0.819	•	1 .
Chloropropene	ND	0.200	ND	0.626		1 -
Ethyltoluene	· ND	0.200	ND	0.982		1
cetone	ND	1.00	ND	2.37		1
enzene	ND	0.200	ND	0.638		1
enzyl chloride	ND	0.200	ND .	1.03	•	1
romodichloromethane	ND	0.200	ND	1.34		1

Project Name:

FORMER COMPUTER CIRCUITS

Project Number:

TED0001

Lab Number:

L0918894

Report Date:

01/05/10

SAMPLE RESULTS

Lab ID:

L0918894-02

Client ID:

Sample Location:

IA-2

145 MARCUS BLVD.

Date Collected:

12/29/09 15:55

Date Received:

12/30/09 cified ,

-leld Prep:	Not Spec
	•

	ppbV		ug/m	3		Dilution
Parameter	Results	RDL	Results	RDL	Qualifier	Factor
Volatile Organics in Air (Low Level)	- Mansfield Lab					
Bromoform	ND	0.200	ND	2.06		1
Bromomethane	· ND	0.200	ND	0.776		, 1
Carbon disulfide	ND	0.200	ND	0.622		1
Carbon tetrachloride	ND	0.200	ND	1.26	••	1 .
Chlorobenzene	ND	0.200	ND	0.920		1 -
Chloroethane	ND	0.200	. ND	0.527		. 1
Chloroform	ND	0.200	ND	0.976		1
Chloromethane	0.586	0.200	1,21	0.413		. 1
is-1,2-Dichloroethene	ND	0.200	. ND	0.792		1
is-1,3-Dichloropropene	ND	0.200	· ND	0.907		1
cyclohexane	ND	0.200	• ND	0.688	*	1
ibromochloromethane	ND	0.200	ND	1.70		.1
ichlorodifluoromethane	0.465	0.200	2.30	0.988	• .	1
thanol	92.6	2.50	. 174	4.71		1
thyl Acetate	ND	0.500	, ND	1.80		1 .
thylbenzene	ND	0.200	ND	0.868	•	1
reon-113	ND	0.200	ND	1.53	4 · *	1
reon-114	ND.	0.200	. ND	1.40		. 1
exachlorobutadiene	ND.	0.200	, ND	2.13	• .	1
sopropanol	22.9	0.500	56.2	1.23		1 .
lethylene chloride	· ND	0.500	ND	1.74		. 1
Methyl-2-pentanone	0.555	0.200	2.27	0.819		1
lethyl tert butyl ether	ND	0,200	ND	0.720		1
/m-Xylene	ND	0.400	ND	1.74		1
Xylene	ND	0.200	ND	0.868		1
eptane	0.246	0.200	1.01	0.819		' 1
-Hexane	ND	0.200	ND	0.704		. 1
Propylene Propylene	ND	0.200	ND	0.704		!
		0.200	, ND	0.044		1

Project Name: Project Number: FORMER COMPUTER CIRCUITS

TED0001

Lab Number:

L0918894

Report Date:

01/05/10

SAMPLE RESULTS

Lab ID:

L0918894-02

Client ID:

Sample Location:

IA-2

145 MARCUS BLVD.

Date Collected:

12/29/09 15:55

Date Received:

12/30/09

Field Prep:

	ppbV		ug/m	3		Dilution
Parameter	Results	RDL	Results	RDL	Qualifier	Factor
Volatile Organics in Air (Low Level)	Mansfield Lab			•		
Styrene	ND	0.200	ND	0.851	·	1
Tetrachloroethene	ND	0.200	ND	1.36	•	,1
Tetrahydrofuran	ND	0.200	ND	0.589		1
Toluene	0.360	0.200	1.36	0.753		1
rans-1,2-Dichloroethene	ND.	0.200	ND	0.792		1
rans-1,3-Dichloropropene	ND	0.200	ND	0.907		1
Trichloroethene	ND	0.200	ND	1.07		1
Trichlorofluoromethane	0.374	0.200	2.10	1.12		1
Vinyl acetate	ND °	0.200	ND	0.704		1
Vinyl bromide	ND .	0.200	ND	0.874		1 .
Vinyl chloride	ND	0.200	ND	0.511		1

Project Name:

FORMER COMPUTER CIRCUITS

Project Number: TEI

TED0001

Lab Number:

L0918894

Report Date:

01/05/10

SAMPLE RESULTS

Lab ID:

L0918894-02

Client ID:

IA-2

Sample Location:

145 MARCUS BLVD.

Matrix:

Air

Anaytical Method: Analytical Date: 48,TO-15-SIM 12/31/09 20:37

Analyst:

RY

Date Collected:

12/29/09 15:55

Date Received:

12/30/09

Field Prep:

	ppbV		ug/m3			Dilution	
Parameter	Results	RDL	Results	RDL	Qualifier	Factor	
Volatile Organics in Air by SIM - Mar	nsfield Lab	• • • • • • • • •	•		. * .		_
Trichloroethene	ND .	0.020	ND	0.107	•	1	

Project Name:

FORMER COMPUTER CIRCUITS

Project Number:

TED0001

Lab Number:

L0918894

Report Date:

01/05/10

SAMPLE RESULTS

Lab ID:

L0918894-03

Client ID:

IA-3

Sample Location:

145 MARCUS BLVD.

Matrix:

Air

Anaytical Method: Analytical Date:

48,TO-15 12/31/09 21:15

Analyst:

RY

Date Collected: Date Received: 12/29/09 16:40

12/30/09

Field Prep:

	ppbV		ug/m3		•	Dilution	
Parameter	Results	RDL	Results	RDL	Qualifier	Factor	
olatile Organics in Air (Low Level) -	Mansfield Lab	* * * * * * * * * * * * * * * * * * *					
1,1,1-Trichloroethane	ND	0.200	· ND	1.09	•	1 1	
1,1,2,2-Tetrachloroethane	ND	0.200	ND	1.37		1	
1,1,2-Trichloroethane	ND	0.200	ND	1.09	•	1	
,1-Dichloroethane	ND -	0.200	ND	0.809		1	
,1-Dichloroethene	ND	0.200	· ND	0.792		1	
,2,4-Trichlorobenzene	. ND	0.200	ND	1.48	•	1	
,2,4-Trimethylbenzene	ND	0.200	ND	0.982		1	
,2-Dibromoethane	ND	0.200	ND .	1.54		1	
,2-Dichlorobenzene	ND	0.200	ND	1.20		1	
,2-Dichloroethane	ND	0.200	ND	0.809		1	
,2-Dichloropropane	ND	0.200	ND.	0.924		1	
,3,5-Trimethybenzene	ND	0.200	ND	0.982		1	
,3-Butadiene	ND ·	0.200	ND	0.442		1	
,3-Dichlorobenzene	ND	0.200	ND	1.20	•	1	
,4-Dichlorobenzene	ND	0.200	ND	1.20		1	
,4-Dioxane	ND	0.200	· ND	0.720		. 1	
,2,4-Trimethylpentane	0.475	0.200	2.22	0.934		1	
-Butanone	0.506	0.200	1.49	0.589		1	
-Hexanone	ND	0.200	ND	0.819		. 1	
-Chloropropene	ND	0.200	ND	0.626	•	· 1	
-Ethyltoluene	ND	0.200	ND	0.982		1	
cetone	6.06	1.00	14.4	2.37		1	
enzene	ND	0.200	ND	0.638		1	
enzyl chloride	ND	0.200	ND ·	1.03	•	1	
romodichloromethane	ND	0.200	ND	1.34			

Project Name:

FORMER COMPUTER CIRCUITS

Project Number:

TED0001

Lab Number:

L0918894

Report Date:

01/05/10

SAMPLE RESULTS

Lab ID:

L0918894-03

Client ID:

IA-3

Sample Location:

145 MARCUS BLVD.

Date Collected:

12/29/09 16:40

Date Received:

12/30/09

Field Prep:

	ppbV		ug/m3			Dilution
Parameter	Results	RDL	Results	RDL	Qualifier	Factor
Volatile Organics in Air (Low Level) - N	lansfield Lab	•				•
Bromoform	ND	0.200	ND ·	2.06		1
Bromomethane	ND	0.200	ND	0.776	,	1
Carbon disulfide	ND	0.200	ND	0.622		1
Carbon tetrachloride	ND	0.200	ND	1:26		.
Chlorobenzene	ND	0.200	ND (0.920		1
Chloroethane	ND	0.200	ND.	0.527		1
Chloroform	ND	0.200	ND	0.976		1
Chloromethane	0.593	0.200	1.22	0.413		. 1
cis-1,2-Dichloroethene	ND	0.200	ND	0.792	ì	1
cis-1,3-Dichloropropene	ND	0.200	ND .	0.907		1
Cyclohexane	0.254	0.200	0.874	0.688		1
Dibromochloromethane	ND	0.200	ND	1.70		1
Dichlorodifluoromethane	0.432	0.200	2.13	0.988		1
Ethanol	55.7	2.50	105	4.71	•	. 1
Ethyl Acetate	ND	0.500	ND	1.80		1
Ethylbenzene	ND	0.200	, ND	0.868		1 .
Freon-113	ND .	0.200	ND	1.53	*	1 .
Freon-114	ND	0.200	ND	1.40		1
Hexachlorobutadiene	ND	0.200	ND	2.13		1
Isopropanol	50.2	0.500	123	1.23	•	1 .
Methylene chloride	ND	0.500	ND	1.74		1
4-Methyl-2-pentanone	ND	0.200	ND	0,819		1
Methyl tert butyl ether	ND	0.200	ND	0.720		. 1
p/m-Xylene	ND	0.400	ND	1.74		1
o-Xylene	ND	0.200	ND	0.868		1 ,
Heptane	0.491	0.200	2.01	0.819		1
n-Hexane	0.232	0.200	0.817	0.704		1
Propylene	ND	0.200	ND	0.344		1

Project Name:

FORMER COMPUTER CIRCUITS

Project Number:

TED0001

Lab Number:

L0918894

Report Date:

01/05/10

SAMPLE RESULTS

Lab ID:

L0918894-03

Client ID:

Sample Location:

IA-3

145 MARCUS BLVD.

Date Collected:

12/29/09 16:40

Date Received:

12/30/09

Field Prep: Not Specified

	PpbV		ug/m3	3		Dilution Factor	
Parameter	Results	RDL	Results	RDL	Qualifier		
Volatile Organics in Air (Low Leve	l) - Mansfield Lab	4					
Styrene	ND	0.200	ND	0.851		, • 1	
Tetrachloroethene	ND	0.200	(ND	1.36		1	
Tetrahydrofuran	ND	0.200	ND	0.589		1. 1	
Toluene	0.536	0.200	2.02	0.753		1	
trans-1,2-Dichloroethene	, ND '	0.200	ND	0.792		1	
trans-1,3-Dichloropropene	ND	0.200	ND	0.907		. 1	
Trichloroethene	ND	0.200	ND	1.07	•	1	
Trichlorofluoromethane	0.205	0.200	1.15	1.12		1	
Vinyl acetate	ND	0.200	ND	0.704	•	1	
Vinyl bromide	ND	0.200	ND	0.874		1.1	
Vinyl chloride	. ND	0.200	, ND	0.511	•	1	•

Project Name: FORMER COMPUTER CIRCUITS

Project Number: TED0001

Lab Number:

L0918894

Report Date:

01/05/10

SAMPLE RESULTS

Lab ID:

L0918894-03

Client ID:

IA-3

Sample Location:

145 MARCUS BLVD.

Matrix:

Air

Anaytical Method: Analytical Date: 48,TO-15-SIM 12/31/09 21:15

Analyst:

RY

Date Collected:

12/29/09 16:40

Date Received:

12/30/09

Field Prep:

	ppbV	ppbV		ug/m3		Dilution	
Parameter	Results	RDL	Results	RDL	Qualifier	Factor	
Volatile Organics in Air by SIM	l - Mansfield Lab			,			
Trichloroethene	0.181	0.020	0.972	0.107		1	

Project Name:

FORMER COMPUTER CIRCUITS

Lab Number:

L0918894

Project Number:

TED0001

Report Date:

Date Collected:

Date Received:

Field Prep:

01/05/10

12/29/09 15:55

Not Specified

12/30/09

SAMPLE RESULTS

Lab ID:

L0918894-04

Client ID:

IA-4

Sample Location:

145 MARCUS BLVD.

Matrix:

Air

Anaytical Method:

48,TO-15

Analytical Date:

12/31/09 21:53

Analyst:

RY

,	ppbV	ppbV		13		Dilution
Parameter	Results	RDL	Results	RDL	Qualifier	Factor
Volatile Organics in Air (Low L	evel) - Mansfield Lab					
1,1,1-Trichloroethane	ND	0.200	ND	1.09		. 1
1,1,2,2-Tetrachloroethane	ND :	0.200	ND	1.37		. 1
1,1,2-Trichloroethane	ND.	0.200	ND	1.09		1
,1-Dichloroethane	ND	0.200	ND	0.809		1 .
,1-Dichloroethene	ND	0.200	· ND	0.792		; 1
,2,4-Trichlorobenzene	ND	0.200	ND ND	1.48		1 1
,2,4-Trimethylbenzene	ND	0.200	ND	0.982		1
,2-Dibromoethane	ND	0.200	ND	1.54	•	, 1
,2-Dichlorobenzene	ND	0.200	. ND	1.20	٠.	1
,2-Dichloroethane	ND	0.200	ND	0.809	,	1
2-Dichloropropane	ND	0.200	ND	0.924	•	1
,3,5-Trimethybenzene	ND	0.200	ND	0.982		.1
,3-Butadiene	ND	0.200	ND	0.442		1
,3-Dichlorobenzene	ND	0.200	ND	1.20		1
,4-Dichlorobenzene	ND .	0.200	ND	1.20		1
,4-Dioxane	ND	0.200	ND	0.720		1
,2,4-Trimethylpentane	ND	0.200	ND	0.934		· 1
-Butanone	0.287	0.200	0.846	0.589		1
-Hexanone	ND	0.200	ND	0.819		1
-Chloropropene	. ND	0.200	ND	0.626		1
-Ethyltoluene	ND	0.200	· ND	0.982		1
cetone	3.38	1.00	8.02	2.37		1
enzene	ND	0.200	, ND	0.638		1
enzyl chloride	ND	0.200	ND	1.03		1
romodichloromethane	ND	0.200	ND	1.34		1

Project Name:

FORMER COMPUTER CIRCUITS

Project Number:

TED0001

Lab Number:

L0918894

Report Date:

01/05/10

SAMPLE RESULTS

Lab ID:

L0918894-04

Client ID:

IA-4

Sample Location:

145 MARCUS BLVD.

Date Collected:

12/29/09 15:55

Date Received: Field Prep:

12/30/09 Not Specified

	ppbV		ug/m3			Dilution
Parameter	Results	RDL	Results	RDL	Qualifier	Factor
Volatile Organics in Air (Low Level) - Ma	ansfield Lab					
Bromoform	ND	0.200	ND	2.06		.1
Bromomethane	ND	0.200	ND .	0.776		. 1
Carbon disulfide	ND	0.200	ND	0.622	``	1 .
Carbon tetrachloride	ND.	0.200	ND	1.26		1
Chlorobenzene	ND	0.200	ND	0.920		1 '
Chloroethane	ND	0.200	ND	0.527		1 .
Chloroform	ND ;	0.200	ND	0.976		1
Chloromethane	0.540	0.200	1.11	0.413		· 1
sis-1,2-Dichloroethene	ND	0.200	ND	0.792		1
sis-1,3-Dichloropropene	ND	0.200	ND	0.907		1
Cyclohexane	ND	0.200	ND	0.688		1
Dibromochloromethane	ND.	0.200	ND	1.70		1
Dichlorodifluoromethane	0.442	0.200	2.18	0.988		1
Ethanol	13.7	2.50	25.7	4.71		1
thyl Acetate	ND	0.500	ND	1.80	٠.	. 1
thylbenzene	ND	0.200	ND	0.868		1
reon-113	ND .	0.200	· ND	1.53		1
reon-114	ND	0.200	ND	1.40		· 1
lexachlorobutadiene	ND	0.200	ND	2.13		1
sopropanol	15.3	0.500	37.6	1.23	• •	1
lethylene chloride	ND	0.500	ND	1.74	٠	1
-Methyl-2-pentanone	0.328	0.200	1.34	0.819		1
Methyl tert butyl ether	ND .	0.200	ND	0.720		1
/m-Xylene	ND	0.400	ND	1.74		1
-Xylene	ND	0.200	ND	0.868		1
leptane	0.200	0.200	0.819	0.819	,	1
-Hexane	ND	0.200	ND	0.704		1
Propylene	0.256	0.200	0.440	0.344		1

Project Name: Project Number:

FORMER COMPUTER CIRCUITS

TED0001

Lab Number:

L0918894

Report Date:

01/05/10

SAMPLE RESULTS

Lab ID:

L0918894-04

Client ID:

IA-4

Sample Location:

145 MARCUS BLVD.

Date Collected:

12/29/09 15:55

Date Received:

12/30/09

Field Prep:

	ppbV	ppbV		ug/m3		Dilution
Parameter	Results	RDL	Results	RDL	Qualifier	Factor
Volatile Organics in Air (Low Leve	el) - Mansfield Lab	•				
Styrene	ND	0.200	ND	0.851	-	1
Tetrachloroethene	ND	0.200	ND	1.36		1
Tetrahydrofuran	ND	0.200	ŅD	0.589		1
Toluene	ND	0.200	ND	0.753	4	1
trans-1,2-Dichloroethene	ND	0.200	ND	0.792	* **	· 1
rans-1,3-Dichloropropene	ND	0.200	ND	0.907		1
Trichloroethene	ND	0.200	ND	1.07		1
Trichlorofluoromethane	0.236	0.200	1.32	1.12		1 .
Vinyl acetate	ND, -	0.200	ND	0.704		1
Vinyl bromide	ND	0.200	ND	0.874		1
Vinyl chloride	ND ·	0.200	ND	0.511		1

Project Name:

FORMER COMPUTER CIRCUITS

Project Number: TED0001

Lab Number:

L0918894

Report Date:

01/05/10

SAMPLE RESULTS

Lab ID:

L0918894-04 ·

Client ID:

IA-4

Sample Location:

145 MARCUS BLVD.

Matrix:

/ Air

Anaytical Method: Analytical Date: 48,TO-15-SIM 12/31/09 21:53

Analyst:

RY

Date Collected:

12/29/09 15:55

Date Received:

12/30/09

Field Prep:

	ppbV		ug/m3		. •	Dilution
Parameter	Results	RDL	Results	RDL	Qualifier	Factor
Volatile Organics in Air by SIM - Ma	nsfield Lab				•	
Trichloroethene	ND	0.020	ND	0.107	•	1

Project Name:

FORMER COMPUTER CIRCUITS

Project Number:

TED0001

Lab Number:

L0918894

Report Date:

01/05/10

SAMPLE RESULTS

Lab ID:

L0918894-05

Client ID:

IA-5

Sample Location:

145 MARCUS BLVD.

Matrix:

Air

Anaytical Method: Analytical Date: 48,TO-15 12/31/09 22:31

Analyst:

RY

Date Collected:

12/29/09 16:02

Date Received:

12/30/09

Field Prep:

	ppbV	ug/m3		· Di	Dilution	
Res	sults RDL	Results	RDL Q		actor	
ics in Air (Low Level) - Mansfie	eld Lab					
ane	ND 0.200	ND	1.09		1 .	
oethane	ND 0.200	ND	1.37		1 . :	
ane	ND 0.200	ND	1.09		1	
e ,	ND 0.200	ND	0.809		1,	
e	ND 0.200	ND	0.792		1	
zene N	ND 0.200	ND	1,48		1	
nzene	ND 0.200	ND	0.982		1 .	
e N	ND 0.200	ND	1.54		1	
ne	ND 0.200	ND	1.20		1	
е ,	ND 0.200	ND	0.809		1	
ne ,	ND 0.200	ND	0.924		1.	
zene N	ND 0.200	ND	0.982		1	
N	ND 0.200	ND '	0.442		1	
ne N	ND 0.200	ND	1.20		1	
ne .	ND 0.200	. ND	1.20	·	1	
,	ND 0.200	ND	0.720	÷ 4	1	
ntane N	ND 0.200	ND	0.934		1	
0.3	339 0.200	0.999	0.589		1	
N	ND 0.200	ND	0.819		1 ,	
N	ND 0.200	ND	0.626		·. 1	
N	ND 0.200	ND	0.982		1 .	
3.	.28 1.00	7.78	2.37		1 .	
, . N	ND 0.200		0.638		1	
	ND 0.200	ND	1.03		1	
					. · 1	
hane N	ND 0.200	ND	1.34			

Project Name:

FORMER COMPUTER CIRCUITS

Project Number: TED0001 Lab Number:

L0918894

Report Date:

01/05/10

SAMPLE RESULTS

Lab ID:

L0918894-05

Client ID:

IA-5

Sample Location:

145 MARCUS BLVD.

Date Collected:

12/29/09 16:02

Date Received:

12/30/09

Field Prep:

	pbV	ppbV		ug/m3		Dilution
Parameter	Results	RDL	Results	RDL	Qualifier	Factor
Volatile Organics in Air (Low Level) - Mansfield Lab			•	•	• •
Bromoform	ND	0.200	ND	2.06		1.
Bromomethane	, ND	0.200	ND	0.776		1
Carbon disulfide	ND	0.200	ND	0.622		1
Carbon tetrachloride	ND	0.200	. ND	1.26		1
Chlorobenzene	ND	0.200	ND	0.920		1
Chloroethane	ND	0.200	ND	0.527		1
Chloroform	ND	0.200	ND	0.976		4
Chloromethane	0.572	0.200	1.18	0.413		1
cis-1,2-Dichloroethene	ND	0.200	ND	0.792	•	.* 1
cis-1,3-Dichloropropene	ND	0.200	ND	0.907		1
Cyclohexane	ND	0.200	ND	0.688		
Dibromochloromethane	ND.	0.200	ND	1.70		1
Dichlorodifluoromethane	0.451	0.200	2.23	0.988		1
Ethanol	25.0	2.50	47.0	4.71		1
Ethyl Acetate	ND	0.500	ND	1.80		1.
Ethylbenzene	ND	0.200	ND	0.868		1
Freon-113	ND	0.200	ND	1.53		1
Freon-114	ND .	0.200	ND	1.40		1
Hexachlorobutadiene	ND	0.200	ND	2.13	٠.	1
sopropanol	2.22	0.500	5.45	1.23		
Methylene chloride	ND	0.500	ND	1.74		1
1-Methyl-2-pentanone	ND	0.200	ND	0.819		1
Methyl tert butyl ether	ND	0.200	ND	0.720		1
o/m-Xylene	ND.	0.400	ND	1.74		1
p-Xylene	ND	0.200	ND	0.868		1
leptane	ND	0.200	ND	0.819		'
-Hexane	ND	0.200	ND	0.704		1
Propylene	ND	0.200	ND		*	
		٥.٤٥٥	ИÚ	0.344		1

Project Name:

FORMER COMPUTER CIRCUITS

Project Number: TED0001

Lab Number:

L0918894

Report Date:

01/05/10

SAMPLE RESULTS

Lab ID:

L0918894-05

Client ID:

IA-5

Sample Location:

145 MARCUS BLVD.

Date Collected:

12/29/09 16:02

Date Received:

12/30/09

Field Prep:

$(\mathcal{A}_{i}, \mathcal{A}_{i}) = \mathcal{A}_{i} = \{ (i, i) \in \mathcal{A}_{i} \mid (i, i) \in \mathcal{A}_{i} : i \in \mathcal{A}_{i} \} $	ppbV		ug/m3		Dilution		
Parameter	Results	RDL	Results	RDL	Qualifier Factor		
Volatile Organics in Air (Low Level)	- Mansfield Lab						
Styrene	ND	0.200	ND	0.851	1		
Tetrachloroethene	ND .	0.200	ND	, 1.36	. 1		
Fetrahydrofuran	ND	0.200	ND.	0.589	1		
oluene	ND	0.200	ND	0.753	. 1		
ans-1,2-Dichloroethene	ND	0.200	ND	0.792	1		
ans-1,3-Dichloropropene	ND	0.200	ND	° 0.907	1		
richloroethene	ND	0.200	ND	1.07	1		
richlorofluoromethane	0.218	0.200	1.22	1.12	1		
inyl acetate	ND	0.200	ND	0.704	1		
inyl bromide	ND:	0.200	ND	0.874	1		
/inyl chloride	ND	0.200	ND	0.511	1		

Project Name:

FORMER COMPUTER CIRCUITS

Lab Number:

L0918894

Project Number:

TED0001

Report Date:

01/05/10

SAMPLE RESULTS

Lab ID:

L0918894-05

Client ID:

IA-5

Sample Location:

145 MARCUS BLVD.

Matrix:

Air

Anaytical Method: Analytical Date: 48,TO-15-SIM 12/31/09 22:31

Analyst:

RY

Date Collected:

12/29/09 16:02

Date Received:

12/30/09

Field Prep:

	ppb\	ppbV		ug/m3		Dilution
Parameter	Results	RDL	Results	RDL	Qualifier	Factor
Volatile Organics in Air by SIM -	Mansfield Lab			, .		
Trichloroethene	ND	0.020	ND	0.107		1
	•					

Project Name:

FORMER COMPUTER CIRCUITS

Project Number:

TED0001

Lab Number:

L0918894

Report Date:

01/05/10

SAMPLE RESULTS

Lab ID:

L0918894-06

Client ID:

IA-6

Sample Location:

145 MARCUS BLVD.

Matrix:

Air

Anaytical Method: Analytical Date: 48,TO-15 12/31/09 23:48

Analyst:

RY

Date Collected:

d: 12

12/29/09 16:40

Date Received:

12/30/09.

Field Prep:

	ppbV	ppbV		ug/m3		Dilution	
Parameter	Results	RDL	Results RDL		Qualifier	Factor	
Volatile Organics in Air (Low Level) - I	Mansfield Lab						
1,1,1-Trichloroethane	ND	0.200	ND	1.09		1	
1,1,2,2-Tetrachloroethane	· ND	0.200	.ND	1.37		1.	
1,1,2-Trichloroethane	ND .	0.200	ND	1.09		. 1	
,1-Dichloroethane	ND	0.200	ND	0.809		1	
,1-Dichloroethene	ND	0.200	ND.	0.792		1	
,2,4-Trichlorobenzene	ND	0.200	ND	1.48		. 1	
,2,4-Trimethylbenzene	ND	0.200	ND	0.982		1	
,2-Dibromoethane	ND	0.200	ND	1.54	•	1	
,2-Dichlorobenzene	ND	0.200	ND	1.20		. 1	
,2-Dichloroethane	ND	0.200	ND	0.809		1	
,2-Dichloropropane	ND	0.200	ND .	0.924	•	, 1	
,3,5-Trimethybenzene	ND	0.200	ND	0.982		1 .	
,3-Butadiene	ND	0.200	ND	0.442		1	
,3-Dichlorobenzene	. ND	0.200	ND	1.20		1	
,4-Dichlorobenzene	ND	0.200	ND	1.20		1	
,4-Dioxane	ND	0.200	ND	• 0.720		1	
,2,4-Trimethylpentane	1.17	0.200	5.47	0.934	•	1	
-Butanone	0.452	0.200	1.33	0.589		, 1	
-Hexanone	ND	0.200	ND	0.819		1	
-Chloropropene	ND	0.200	ND	0.626		1	
-Ethyltoluene	ND	0.200	· ND	0.982		. 1	
cetone	7.02	1.00	16.7	2.37		1	
enzene	ND	0.200	ND	0.638		1	
enzyl chloride	ND	0.200	ND	1.03		1	
romodichloromethane	ND	0.200	ND	1.34		1	

Project Name:

FORMER COMPUTER CIRCUITS

Project Number:

TED0001

Lab Number:

L0918894

Report Date:

01/05/10

SAMPLE RESULTS

Lab ID:

L0918894-06

Client ID:

Sample Location:

IA-6

145 MÁRCUS BLVD.

Date Collected:

12/29/09 16:40

Date Received:

12/30/09

Field Prep:

7 (0)(1 (1)	300 D2. D.				ιτομ.	NOT St	
	ppbV		ug/m3			Dilution	
Parameter	Results	RDL	Results	RDL	Qualifier	Factor	
Volatile Organics in Air (Low Lo	evel) - Mansfield Lab	•					
Bromoform	ND	0.200	ND	2.06		1	
Bromomethane	ND	0.200	ND	0.776		1	
Carbon disulfide	ND	0.200	· ND	0.622		1	
Carbon tetrachloride	ND	0.200	ND	1.26		1	
hlorobenzene	ND	0.200	ND	0.920		. 1	
Chloroethane	ND	0.200	ND	0.527		1	
Chloroform	ND	0.200	ND	0.976		1	
Chloromethane	0.663	0.200	1.37	0.413		1	
is-1,2-Dichloroethene	ND	0.200	ND	0.792		. 1	
s-1,3-Dichloropropene	ND	0.200	ND	0.907		1	
yclohexane	0.204	0.200	0.702	0.688		. 1	
ibromochloromethane	ND	0.200	ND	1.70		. 1	
ichlorodifluoromethane	0.413	0.200	2.04	0.988		1	
thanol	47.4	2.50	89.3	4.71		1	
thyl Acetate	ND	0.500	ND	1.80		1	
thylbenzene	, ND	0.200	ND	0.868		1	
reon-113	ND	0.200	ND -	1.53		1	
reon-114	NÓ	0.200	ND	1.40	i	i	
exachlorobutadiene	ND	0.200	ND	2.13	•	1	
opropanol	52.0	0.500	128	1.23		1	
ethylene chloride	ND .	0.500	ND	1.74		1	
Methyl-2-pentanone	ND	0.200	. ND	0.819		1	
lethyl tert butyl ether	ND	0.200	ND	0.720		' . 1	
m-Xylene	ND	0.400	ND	1.74		1	
Xylene	ND	0.200	ND	0.868		1	
eptane	0.830	0.200	3.40	0.819		1	
Hexane	. 0.224	0.200	,			1	
ropylene			0.789	0.704		. 1	
	ND	0.200	ND	0.344		1	

Project Name:

FORMER COMPUTER CIRCUITS

Project Number:

TED0001

Lab Number:

L0918894

Report Date:

01/05/10

SAMPLE RESULTS

Lab ID:

L0918894-06

Client ID:

Sample Location:

IA-6

145 MARCUS BLVD.

Date Collected:

Date Received:

12/29/09 16:40 12/30/09

Field Prep:

	ppbV		ug/m	3		Dilution	
Parameter	Results	RDL	Results	RDL	Qualifier	Factor	
Volatile Organics in Air (Low Level)	- Mansfield Lab						-
Styrene	ND ND	0.200	ND	0.851	•	1	٠.
Tetrachloroethene	ND	0.200	ND	1.36		-1	
Tetrahydrofuran	ND	0.200	ND	0.589		1 .	
Toluene	0.692	0.200	2.60	0.753		1	
trans-1,2-Dichloroethene	ND	0.200	ND	0.792	•	1	
trans-1,3-Dichloropropene	ND	0.200	ND	0.907		- 1	
Trichloroethene	ND	0.200	ND	1.07	71	· 1	
Trichlorofluoromethane	0.201	0.200	1.13	1.12		1	٠
Vinyl acetate	ND	0.200	ND	0.704		1 .	
Vinyl bromide	ND	0.200	, ND	0.874		1	
Vinyl chloride	, ND	0.200	ND	0.511		1	
Viriyi Cilionde	ND	0.200	ND ·	0.511		1	

Project Name: FORMER COMPUTER CIRCUITS

Project Number: TED0001

Lab Number:

L0918894

Report Date:

01/05/10

SAMPLE RESULTS

Lab ID:

L0918894-06

Client ID:

IA-6

Sample Location:

145 MARCUS BLVD.

Matrix:

Air

Anaytical Method: Analytical Date: 48,TO-15-SIM 12/31/09 23:48

Analyst:

RY

Date Collected:

12/29/09 16:40

Date Received:

12/30/09

Field Prep:

	ppbV	ppbV		ug/m3		Dilution	
Parameter	Results	RDL	Results RDL		Qualifier	Factor	
Volatile Organics in Air by SIM -	Mansfield Lab						
Trichloroethene	0.150	0.020	0.805	0.107	•	. 1	

Project Name:

FORMER COMPUTER CIRCUITS

Project Number: TED0001

Lab Number:

L0918894

Report Date:

01/05/10

SAMPLE RESULTS

Lab ID:

L0918894-07

Client ID:

IA-7

Sample Location:

145 MARCUS BLVD.

Matrix:

Air

Anaytical Method:

48,TO-15

Analytical Date:

01/01/10 00:26

Analyst:

RY

Date Collected:

12/29/09 16:40

Date Received:

12/30/09

Field Prep:

	ppbV	ppbV		ug/m3		. Dilution
Parameter	Results	RDL	Results	RDL	Qualifier	Factor
Volatile Organics in Air (Low Level) - Mansfield Lab		•			
1,1,1-Trichloroethane	ND	0.200	ND	1.09		1
1,1,2,2-Tetrachloroethane	ND	0.200	ND	1.37		1
1,1,2-Trichloroethane	ND	0.200	ND	1.09		. 1 ,
1,1-Dichloroethane	ND	0.200	ND	0.809		1
1,1-Dichloroethene	ND *	0.200	ND	0.792		1
1,2,4-Trichlorobenzene	ND	0.200	ND	1.48		1
1,2,4-Trimethylbenzene	ND	0.200	, ND	0.982		. 1
1,2-Dibromoethane	ND	0.200	· ND	1.54		1
1,2-Dichlorobenzene	ND	0.200	ND	1.20		1
1,2-Dichloroethane	ND	0.200	ND	0.809	•	1
1,2-Dichloropropane	ND :	0.200	ND	0.924		1
1,3,5-Trimethybenzene	ND	0.200	ND	0.982		1 .
1,3-Butadiene	ND	0.200	ND	0.442		1,
1,3-Dichlorobenzene	ND	0.200	ND	1.20		1
1,4-Dichlorobenzene	ND	0.200	ND	1.20		1
1,4-Dioxane	ND	0.200	, ND	0.720		1
2,2,4-Trimethylpentane	0.461	0.200	2.15	0.934		1 .
2-Butanone	0.479	0.200	1.41	0.589		1
2-Hexanone	ND	0.200	ND	0.819	r.*	1
3-Chloropropene	. ND	0.200	ND	0.626		1
4-Ethyltoluene	ND	0.200	ND ·	0.982		1
Acetone	6.23	1.00	14.8	2.37		1
Benzene	ND	0.200	ND	0.638	•	1
Benzyl chloride	ND	0.200	ND	1.03		1
Bromodichloromethane	ND	0.200	ND	1.34		1

Project Name:

FORMER COMPUTER CIRCUITS

Project Number:

TED0001

Lab Number:

L0918894

Report Date:

01/05/10

SAMPLE RESULTS

Lab ID:

L0918894-07

Client ID:

Sample Location:

IA-7

145 MARCUS BLVD.

Date Collected:

12/29/09 16:40 12/30/09

Date Received: Field Prep:

	ppbV	ppbV		ug/m3		Dilution
Parameter	Results	RDL	Results	RDL	Qualifier	Factor
Volatile Organics in Air (Low Level)	Mansfield Lab				* **	
Bromoform	ND	0.200	ND	2.06		1
Bromomethane	ND	0.200	ND ·	0.776		1
Carbon disulfide	ND	0.200	ND	0.622	,	1
Carbon tetrachloride	ND	0.200	ND	1.26		1
Chlorobenzene	ND	0.200	ND	0.920		1 .
Chloroethane	ND	0.200	ND	0.527		1 .
Chloroform	ND	0.200	ND	0.976	•	1
Chloromethane	0.605	0.200	1.25	0.413	r	1
cis-1,2-Dichloroethene	ND	0.200	ND	0.792	•	1
cis-1,3-Dichloropropene	ND	0.200	ND	0.907		1
Cyclohexane	0.207	0.200	0.712	0.688	•	1
Dibromochloromethane	ND	0.200	ND	1.70		-1
Dichlorodifluoromethane	0.414	0.200	2.04	0.988		1
Ethanol	50.9	2.50	95.9	4.71		· 1
Ethyl Acetate	ND	0.500	ND	1.80		1
Ethylbenzene	ND	0.200	ND	0.868	•	1
Freon-113	ND	0.200	ND	1.53		1
Freon-114	ND	0.200	ND	1.40	•	1
Hexachlorobutadiene	ND	0.200	ND	2.13		1
Isopropanol	53.6	0.500	132	1.23	:	1
Methylene chloride	ND	0.500	ND	1.74		1
4-Methyl-2-pentanone	ND	0.200	ND	0.819		1
Methyl tert butyl ether	ND	0.200	ND	0.720		1
p/m-Xylene	ND	0.400	ND	1.74		1
o-Xylene	ND	0.200	ND	0.868		. 1
Heptane	0.505	0.200	2.07	0.819	•	1
n-Hexane	0.204	0.200	0.718	0.704		1
Propylene	ND	0.200	ND	0.344		1
the state of the s				-	4	

Project Name:

FORMER COMPUTER CIRCUITS

Project Number: TED0001 Lab Number:

L0918894

Report Date:

01/05/10

SAMPLE RESULTS

Lab ID:

L0918894-07

Client ID:

Sample Location:

IA-7

145 MARCUS BLVD.

Date Collected:

12/29/09 16:40

Date Received:

12/30/09

Field Prep:

	ppbV		ug/m3		Dilution
Parameter	Results	RDL	Results	RDL	Qualifier Factor
Volatile Organics in Air (Low Level)	Mansfield Lab				
Styrene	ND	0.200	ND	0.851	1
Tetrachloroethene	ND	0.200	ND ⁻	1.36	1
Tetrahydrofuran	ND	0.200	, ND	0.589	1
Toluene	0.458	0.200	1.72	0.753	• •1
trans-1,2-Dichloroethene	ND	0.200	ND	0.792	· · · · · · · · · · · · · · · · · · ·
trans-1,3-Dichloropropene	ND	0.200	ND	0.907	1
Trichloroethene	ND	0.200	ND	1.07	1
Trichlorofluoromethane	0.200	0.200	1.12	1.12	1
Vinyl acetate	ND	0.200	· · ND	0.704	†
Vinyl bromide	ND	0.200	ND	0.874	
Vinyl chloride	ND	0.200	ND ,	0.511	1

Project Name:

FORMER COMPUTER CIRCUITS

Project Number: TED0001 Lab Number:

L0918894

Report Date:

01/05/10

SAMPLE RESULTS

Lab ID:

L0918894-07

Client ID:

IA-7 .

Sample Location:

145 MARCUS BLVD.

Matrix:

Anaytical Method: Analytical Date:

48,TO-15-SIM 01/01/10 00:26

Analyst:

RY

Date Collected:

12/29/09 16:40

12/30/09

Date Received: Field Prep:

		ppbV		ug/m3			Dilution	
Parameter		Results	RDL	Results	RDL	Qualifier	Factor	
Volatile Organics in Air by	SIM - Mans	sfield Lab		,				
Trichloroethene		0.159	0.020	0.854	0.107	4	, 1	

Project Name:

FORMER COMPUTER CIRCUITS

Project Number:

TED0001

Lab Number:

L0918894

Report Date:

01/05/10

SAMPLE RESULTS

Lab ID:

L0918894-08

Client ID:

IA-8

Sample Location:

145 MARCUS BLVD.

Matrix:

Air

Anaytical Method:

48, 01/0

Analytical Date: Analyst:

RY

Date Collected:

12/29/09 16:40

Date Received: Field Prep:

12/30/09 Not Specified

,TO-15			
/01/10 01:04			
′		•	

•	ppbV		ug/m3		Dilution
Parameter	Results	RDL	Results	RDL	Qualifier Factor
Volatile Organics in Air (Low Level) -	Mansfield Lab	* *.			
,1,1-Trichloroethane	ND	0.200	ND	1.09	1
,1,2,2-Tetrachloroethane	ND	0.200	ND	1.37	1
,1,2-Trichloroethane	ND	0.200	ND	1.09	. 1
,1-Dichloroethane	ND	0.200	• ND	0.809	1 .
,1-Dichloroethene	ND .	0.200	ND	0.792	1
,2,4-Trichlorobenzene	ND	0.200	ND	1.48	1
,2,4-Trimethylbenzene	ND	0.200	ND	0.982	1
,2-Dibromoethane	ND	0.200	ND	1.54	
,2-Dichlorobenzene	ND	0.200	ND	1.20	1
,2-Dichloroethane	ND	0.200	ND	0.809	. 1
,2-Dichloropropane	ND .	0.200	ND	0.924	1
,3,5-Trimethybenzene	ND	0.200	, · ND	0.982	1
,3-Butadiene	ND	0.200	ND	0.442	1
,3-Dichlorobenzene	ND	0.200	ND	1.20	· 1
,4-Dichlorobenzene	ND	0.200	· ND	1.20	1
,4-Dioxane	ND	0.200	ND	0.720	1
2,2,4-Trimethylpentane	0.528	0.200	2.46	0.934	1
-Butanone	0.608	0.200	1.79	0.589	1
-Hexanone	ND	0.200	ND	0.819	1
-Chloropropene	ND	0.200	ND	0.626	`. 1
-Ethyltoluene	ND	0.200	ND	0.982	. 1
cetone	7.08	1.00	16.8	2:37	1
Benzene	ND	0.200	ND	0.638	1
enzyl chloride	ND	0.200	ND	1.03	1
romodichloromethane	ND	0.200	ND	1.34	

Project Name:

FORMER COMPUTER CIRCUITS

Project Number:

TED0001

Lab Number:

L0918894

Report Date:

01/05/10

SAMPLE RESULTS

Lab ID:

L0918894-08

Client ID:

IA-8

Sample Location:

145 MARCUS BLVD.

Date Collected:

12/29/09 16:40

Date Received:

12/30/09

Field Prep:

,	ppbV	<i>l</i>	ug/m3	ug/m3		
Parameter	Results	RDL	Results	RDL	Qualifier	Dilution Factor
Volatile Organics in Air (Low Level) - M	lansfield Lab)				
Bromoform	ND	0.200	ND	2.06		1
Bromomethane	. ND	0.200	ND	0.776		. 1
Carbon disulfide	ND	0.200	ND \	0.622		1
Carbon tetrachloride	· ND	0.200	ND.	1.26	•	1 .
Chlorobenzene	ND	0.200	ND	0.920		1
Chloroethane	ND (0.200	. ND	0.527		1
Chloroform	ND	0.200	ND .	0.976		1
Chloromethane	0.685	0.200	1.41	0.413		1
cis-1,2-Dichloroethene	ND	0.200	ND	0.792		1
cis-1,3-Dichloropropene	ND	0.200	ND	0.907	•	1
Cyclohexane	0.229	0.200	0.788	0.688		1
Dibromochloromethane	ND	0.200	ND	1.70	•	1
Dichlorodifluoromethane	0.455	0.200	2.25	. 0.988 .,		· 1
Ethanol	57.1	2.50	107	4.71	,	1
Ethyl Acetate	ND	0.500	ND ·	1.80	•	1
Ethylbenzene	ND	0.200	ND	0.868	,	1
Freon-113	ND	0.200	ND	1.53	•	1
Freon-114	ND	0.200	ND	1.40		1
Hexachlorobutadiene	ND	0.200	ND.	2.13		1
Isopropanol	60.9	0.500	149	1.23		1
Methylene chloride	ND	0.500	ND	1.74		1
4-Methyl-2-pentanone	ND -	0.200	ND	0.819		.1
Methyl tert butyl ether	ND	0.200	ND	0.720		1
p/m-Xylene	ND	0.400	ND .	1.74		1
o-Xylene	ND	0.200	ND .	0.868		1.
Heptane	0.550	0.200	2.25	0.819		1
n-Hexane	0.202	0.200	0.711	0.704	• • • • • • • • • • • • • • • • • • •	1
Propylene	ND	0.200	ND	0.344		1
		``				

Project Name:

FORMER COMPUTER CIRCUITS

Project Number: TED0001

Lab Number:

L0918894

Report Date:

01/05/10

SAMPLE RESULTS

Lab ID:

L0918894-08

Client ID:

Sample Location:

IA-8

145 MARCUS BLVD.

Date Collected:

12/29/09 16:40

Date Received: Field Prep:

12/30/09 Not Specified

•							•		
		ppbV		•	ug/n	n3 ·		Dilution	
Parameter		Results	RDL		Results	RDL	Qualifier	Factor	
Volatile Organics in Air (Lo	ow Level) - Ma	ansfield Lab				•			
Styrene	•	ND	0.200		ND	0.851		1	
Tetrachloroethene	•	ND.	0.200		ND	1.36		1	
Tetrahydrofuran	• •	ND	0.200		ND	0.589	·	1	
Toluene	· · · · · · · · · · · · · · · · · · ·	0.508	0.200	•	1.91	0.753		. 1	
trans-1,2-Dichloroethene		ND .	0.200		ND	0.792		1	
trans-1,3-Dichloropropene		ND	0.200		ND	0.907		1	
Trichloroethene		ND .	0.200		ND	1.07		1	
Trichlorofluoromethane	•	0.215	0.200		1.21	1.12		1	
Vinyl acetate	•	ND	0.200	•	ND	0.704		1	
Vinyl bromide		ND	0.200		ND	0.874		1	
Vinyl chloride		NĎ	0.200	*	ND	0.511	•	. 1	

Project Name:

FORMER COMPUTER CIRCUITS

Project Number:

TED0001

Lab Number:

L0918894

Report Date:

01/05/10

SAMPLE RESULTS

Lab ID:

L0918894-08

Client ID:

IA-8

Sample Location:

145 MARCUS BLVD.

Matrix:

Air

Anaytical Method: Analytical Date: 48,TO-15-SIM 01/01/10 01:04

Analyst:

RY

Date Collected:

12/29/09 16:40

Date Received:

12/30/09

Field Prep:

	ppb	ppbV		ug/m3		Dilution	
Parameter	Results	RDL	Results	RDL	Qualifier	Factor	
Volatile Organics in Air by S	SIM - Mansfield Lab	-					
Trichloroethene	0.195	0.020	1.05	0.107		1	
•	0				, .		

Project Name:

FORMER COMPUTER CIRCUITS

Lab Number:

L0918894

Project Number:

TED0001

Report Date:

01/05/10

SAMPLE RESULTS

Lab ID:

L0918894-09

Client ID:

NORTH SYSTEM INFLUENT

Sample Location:

145 MARCUS BLVD.

Matrix:

Soil_Vapor

Anaytical Method: Analytical Date: 48,TO-15 01/01/10 01:42

Analyst:

RY

Date Collected:

12/29/09 17:20

Date Received:

12/30/09

Field Prep:

	ppb\	ppbV		3		Dilution	
Parameter	Results	RDL	Results	RDL	Qualifier	Factor	
Volatile Organics in Air (Low Level) - Mansfield Lab						
1,1,1-Trichloroethane	2.40	0.200	13.1	1.09		1	
1,1,2,2-Tetrachloroethane	ND	0.200	ND	1.37		1	
1,1,2-Trichloroethane	ND .	0.200	ND	1.09		1	
1,1-Dichloroethane	1.77	0.200	7.15	0.809		1	
1,1-Dichloroethene	0.278	0.200	1.10	0.792		1	
1,2,4-Trichlorobenzene	ND	0.200	ND	1.48		1.	
1,2,4-Trimethylbenzene	ND	0.200	ND	0.982		1	
,2-Dibromoethane	ND	0.200	ND	1.54		1,	
,2-Dichlorobenzene	ND	0.200	ND	1.20		 1	
,2-Dichloroethane	· ND	0.200	ND ·	0.809	,	1	
,2-Dichloropropane	ND .	0.200	ND	0.924		1	
,3,5-Trimethybenzene	ND	0.200	ND	0.982	•	1	
,3-Butadiene	ND	0.200	ND	0.442		1	
,3-Dichlorobenzene	ND	0.200	ND	1.20		1	
,4-Dichlorobenzene	ND	0.200	ND	1.20		1	
,4-Dioxane	1.70	0.200	6.13	0.720		· 1	
,2,4-Trimethylpentane	ND .	0.200	ND	0.934	•	1	
-Butanone	0.216	0.200	0.636	0.589		· 1	
-Hexanone	ND	0.200	ND	0.819		. 1	
-Chloropropene	ND	0.200	ND	0.626		1 .	
-Ethyltoluene	ND	0.200	ND	0.982		1 .	
cetone	· 1.70	1.00	4.04	2.37		1	
enzene	ND	0.200	ND	0.638		1	
enzyl chloride	ND	0.200	ND	1.03		1.	
romodichloromethane	ND	0.200	. ND	1.34	٠	1	

Project Name:

FORMER COMPUTER CIRCUITS

Project Number: TED0001

Lab Number:

L0918894

Report Date:

01/05/10

SAMPLE RESULTS

Lab ID:

L0918894-09

Client ID:

NORTH SYSTEM INFLUENT

Sample Location:

145 MARCUS BLVD.

Date Collected:

12/29/09 17:20

Date Received:

12/30/09

Field	Prep:	
- react	Pren.	

	ppbV		ug/m3		•	Dilution
Parameter	Results	RDL	Results	RDL	Qualifier	Factor
Volatile Organics in Air (Low Level)	- Mansfield Lab	. "	1.0			
Bromoform	, ND	0.200	ND .	2.06		1
Bromomethane	ND	0.200	, ND	0.776		1
Carbon disulfide	ND	0.200	· ND	0.622		1
Carbon tetrachloride	, ND	0.200	ND .	1.26		1
Chlorobenzene	ND	0.200	ND	0.920		1
Chloroethane	ND	0.200	ND	0.527		1
Chloroform	ND	0.200	ND	0.976	••	1
Chloromethane	0.333	0.200	0.687	0.413		1
cis-1,2-Dichloroethene	0.685	0.200	2.71	0.792		1
cis-1,3-Dichloropropene	ND	0.200	ND ·	0.907		1
Cyclohexane	ND	0.200	ND.	0.688		. 1
Dibromochloromethane	ND	0.200	ND.	1.70		1
Dichlorodifluoromethane	0.466	0.200	2.30	0.988		1
Ethanol	4.74	2.50	8.92	4.71	•	1
Ethyl Acetate	ND	0.500	ND	1.80		· . 1
Ethylbenzene	ND	0.200	ND	0.868		1
Freon-113	1.63	0.200	12.5	1.53	T.	1
Freon-114	ND	0.200	ND	1.40		1
Hexachlorobutadiene	ND	0.200	ND .	2.13		1
sopropanol	3.80	0.500	9.33	1.23		1
Methylene chloride	ND	0.500	ND	1.74		1
4-Methyl-2-pentanone	ND ND	0.200	ND	0.819		
Methyl tert butyl ether	ND	0.200	ND	0.720		1
o/m-Xylene	ND	0.400	ND	1.74		1
o-Xylene	ND	0.200	ND	0.868		1
Heptane	ND	0.200	ND	0.819		1
n-Hexane	ND	0.200	ND	0.704	•	1
Propylene	ND	0.200 ,	ND	0.704		•
	IND	0.200	יואוי	0.344		1

Project Name:

FORMER COMPUTER CIRCUITS

Project Number:

TED0001

Lab Number: Report Date:

L0918894

01/05/10

SAMPLE RESULTS

Lab ID:

L0918894-09

Client ID:

NORTH SYSTEM INFLUENT

Sample Location: 145 MARCUS BLVD.

Date Collected:

12/29/09 17:20

Date Received:

12/30/09

Field Prep:

		ppbV		ug/m	3		Dilution		٠.
Parameter		Results	RDL	Results	RDL	Qualifier	Factor		
Volatile Organics in Air ((Low Level) - M	lansfield Lab	· · · · · ·						
Styrene		ND	0.200	ND .	0.851	•	1 .		
Tetrachloroethene		1.82	0.200	12.3	1.36		1 - 1		*
Tetrahydrofuran	•	ND	0.200	ND	0.589		1		
Toluene	•	ND	0.200	ND	0.753		1		
trans-1,2-Dichloroethene		ND	0.200	ND	0.792		1	٠	
trans-1,3-Dichloropropene		ND	0.200	ND	0.907		1		
Trichloroethene		19.8	0.200	106	1.07		1		
Trichlorofluoromethane		0.251	0.200	1.41	1.12		1		
Vinyl acetate	٠	ND	0.200	ND	0.704		1		
Vinyl bromide		ND	0.200	ND	0.874		· 1 ·		
Vinyl chloride		ND	0.200	ND	0.511		1		

Project Name:

FORMER COMPUTER CIRCUITS

Project Number:

Lab Number:

L0918894

TED0001

Report Date:

01/05/10

SAMPLE RESULTS

Lab ID:

L0918894-10

Client ID:

SOUTH SYSTEM INFLUENT

Sample Location:

145 MARCUS BLVD.

Matrix:

Soil_Vapor

Anaytical Method: Analytical Date:

48,TO-15

Analyst:

01/01/10 02:20

RY

12/29/09 17:15 Date Collected: Date Received: 12/30/09 Field Prep: Not Specified

	ppbV		ug/m3			Dilution	
Parameter	Results	RDL	Results	RDL	Qualifier	Factor	
Volatile Organics in Air (Low Level) - I	Mansfield Lab	i e			*		
1,1,1-Trichloroethane	3.27	0.200	17.8	1.09		1	
1,1,2,2-Tetrachloroethane	ND .	0.200	, ND	1.37		1 '	
1,1,2-Trichloroethane	ND	0.200	ND:	1.09		1	
1,1-Dichloroethane	0.616	0.200	2.49	0.809		1	
1,1-Dichloroethene	0.345	0:200	1.37	0.792		1	
1,2,4-Trichlorobenzene	ND	0.200	ND	1.48		1	
1,2,4-Trimethylbenzene	ND	0.200	ND	0.982		1	
1,2-Dibromoethane	ND	0.200	ND	1.54		1	
1,2-Dichlorobenzene	ND	0.200	ND ,	1.20		1	
1,2-Dichloroethane	ND	0.200	ND (0.809		1 .	
1,2-Dichloropropane	ND	0.200	ND	0.924	;	1	
1,3,5-Trimethybenzene	ND	0.200	ND	0.982		1	
1,3-Butadiene	· ND	0.200	ND	0.442		1	
1,3-Dichlorobenzene	ND	0.200	ND	1.20	1	1 1	
1,4-Dichlorobenzene	ND .	0.200	, ND	1.20		1	
1,4-Dioxane	1.04	0.200	3.73	0.720		1	
2,2,4-Trimethylpentane	ND	0.200	ND	0.934		1	
2-Butanone	0.233	0.200	0.687	0.589		1	
2-Hexanone	ND	0.200	ND	0.819		1	
3-Chloropropene	ND 2	0.200	ND '	0.626		1	
4-Ethyltoluene	ND	0.200	ND	0.982		1	
Acetone	1.92	1.00	4.55	2.37 .	*	1	
Benzene	ND	0.200	ND	0.638	•	1	
Benzyl chloride	ND.	0.200	ND	1.03		1	
Bromodichloromethane	ND	0.200	. ND	1.34		. 1	

Project Name:

FORMER COMPUTER CIRCUITS

Project Number: TED0001

Lab Number:

L0918894

Report Date:

01/05/10

SAMPLE RESULTS

Lab ID:

L0918894-10

Client ID:

Sample Location:

SOUTH SYSTEM INFLUENT

145 MARCUS BLVD.

Date Collected:

12/29/09 17:15

Date Received: Field Prep:

12/30/09

rep:	Not Specified

	ppbV		ug/m	13		Dilution
Parameter	Results	RDL .	Results	RDL	Qualifier	Factor
Volatile Organics in Air (Low Leve	l) - Mansfield Lab		•	•		
Bromoform .	ND	0.200	ND .	2.06		1
Bromomethane	ND	0.200	ND	0.776		1
Carbon disulfide	ND .	0.200	ND.	0.622		1
Carbon tetrachloride	ND [.]	0.200	. · ND	1.26	i	1
Chlorobenzene	ND	0.200	ND	0.920		1
Chloroethane	ND .	0.200	ND	0.527		1
Chloroform	1.00	0.200	4.90	0.976		· 1
Chloromethane	0.285	0.200	0.588	0.413		1
cis-1,2-Dichloroethene	0.316	0.200	1.25	0.792		1
cis-1,3-Dichloropropene	ND	0.200	ND	0.907	• .	1
Cyclohexane	,ND	0.200	ND	0.688		1
Dibromochloromethane	ND ·	0.200	ND	1.70		1
Dichlorodifluoromethane	0.663	0.200	3.28	0.988		1
Ethanol	ND	2.50	ND	4.71		.1
Ethyl Acetate	ND '	0.500	ND	1.80	* * * * * * * * * * * * * * * * * * * *	i i
Ethylbenzene	ND	0.200	ND	0.868		1
Freon-113	19.0	0.200	145	1.53		1 .
Freon-114	ND	0.200	ND	1.40		1 .
-lexachlorobutadiene	ND	0.200	ND	2.13		1 1
sopropanol	1.06	0.500	2.60	1.23	,	· · 1
Methylene chloride	ND	0.500	ЙD	1.74		
1-Methyl-2-pentanone	ND ·	0.200	ND	0.819		1
Methyl tert butyl ether	ND ·	0.200	ND	0.720		1 .
o/m-Xylene	0.402	0.400	1.74	1.74	•	1
o-Xylene	ND	0.200	ND	0.868		1
leptane	ND	0.200	- ND	0.819		1
n-Hexane	0.328	0.200	1.16	0.704		: - 1
Propylene	ND	0.200	ND	0.344		1
•						÷ ,

Project Name:

FORMER COMPUTER CIRCUITS

Project Number:

TED0001

Lab Number:

L0918894

Report Date:

01/05/10

SAMPLE RESULTS

Lab ID:

L0918894-10

Client ID:

SOUTH SYSTEM INFLUENT /

Sample Location:

145 MARCUS BLVD.

Date Collected:

12/29/09 17:15

Date Received:

12/30/09

Field Prep:

	ppbV		ug/m	3	•	Dilution	
Parameter	Results	RDL	Results	RDL	Qualifier	Factor	
Volatile Organics in Air (Low Level) -	Mansfield Lab						-
Styrene	0.282	0.200	1.20	0.851		1	
Tetrachloroethene	4.93	0.200	33.4	1.36		1	
Tetrahydrofuran	0.441	0.200	1.30	0.589		1 .	
Toluene	0.904	0.200	3.40	0.753		. 1	
trans-1,2-Dichloroethene	ND	0.200	ND	0.792	•	1	
trans-1,3-Dichloropropene	ND	0.200	ND	0.907		1	
Trichloroethene	14.7	0.200	79.2	1.07		1	
Trichlorofluoromethane	0.541	0.200	3.04	1.12		1	
Vinyl acetate	.ND	0.200	ND	0.704		. 1	•
Vinyl bromide	ND	0.200	ND	0.874		1	
Vinyl chloride	ND	0.200	ND	0.511		1	

Project Name:

FORMER COMPUTER CIRCUITS

Project Number: TED0001

Lab Number:

L0918894

Report Date:

01/05/10

Method Blank Analysis Batch Quality Control

Analytical Method:

48,TO-15

Analytical Date:

•	ppbV	ppbV		<u> </u>	1	Dilution	
Parameter	Results	RDL	Results	RDL	Qualifier	Factor	
Volatile Organics in Air (Low Lev	vel) - Mansfield Lab	for sample(s): 01-10 Bate	h: WG3952	274-4		
1,1,1-Trichloroethane	ND	0.200	ND	1.09		1 .	
1,1,2,2-Tetrachloroethane	ND	0.200	· ND	1.37		1	
1,1,2-Trichloroethane	ND	0.200	. ND	1.09		1	
1,1-Dichloroethane	ND	0.200	· ND	0.809		1	
1,1-Dichloroethene	ND	0.200	ND	0.792		1	
1,2,4-Trichlorobenzene	. ND	0.200	ND	1.48		1 .	
1,2,4-Trimethylbenzene	ND	0.200	ND	0.982		1	
1,2-Dibromoethane	ND	0.200	ND	1.54		1	
1,2-Dichlorobenzene	ND	0.200	ND	1.20		1	
1,2-Dichloroethane	ND -	0.200	ND	0.809		1	
1,2-Dichloropropane	ND	0.200	ND	0.924		1	
1,3,5-Trimethybenzene	ND	0.200	ND	0.982		· 1	
1,3-Butadiene	ND	0.200	ND	0.442		1.	
1,3-Dichlorobenzene	ND	0.200	ND	1.20	•	1 .	
1,4-Dichlorobenzene	· ND ,	0.200	ND	1.20		1	
1,4-Dioxane	ND	0.200	ND	0.720		1	
2,2,4-Trimethylpentane	ND	0.200	ND	0.934		1	
2-Butanone	ND	0.200	ND	0.589		1	
2-Hexanone	ND	0.200	ND .	0.819		1 .	
3-Chloropropene	ND	0.200	ND	0.626		1	
-Ethyltoluene	ND	0.200	ND ND	0.982		1	
Acetone	· ND	1.00	ND	2.37		. 1	
Benzene	ND .	0.200	ND	0.638		1	
Benzyl chloride	, ND	0.200	ND	1.03		1	
Bromodichloromethane	ND	0.200	ND	1.34		1	

Project Name:

FORMER COMPUTER CIRCUITS

Project Number: TED0001

Lab Number:

L0918894

Report Date:

01/05/10

Method Blank Analysis Batch Quality Control

Analytical Method:

48,TO-15

Analytical Date:

	ppbV		ug/m3			Dilution	
Parameter	Results	RDL	Results	RDL	Qualifier	Factor	
Volatile Organics in Air (Low Leve	l) - Mansfield Lab	for sample	(s): 01-10 Batch	: WG39	95274-4		
Bromoform	ND :	0.200	. ND	2.06		1	
Bromomethane	ND	0.200	ND	0.776	· ·	1	
Carbon disulfide	NĎ	0.200	ND	0.622		1	
Carbon tetrachloride	ND	0.200	ND	1.26	•	1	
Chlorobenzene	· ND	0.200	ND	0.920	. , .	i	
Chloroethane	, ND	0.200	ND	0.527		1	
Chloroform	ND	0.200	ND	0.976	•	1	
Chloromethane	ND	0.200	, ND	0.413		1	
sis-1,2-Dichloroethene	ND	0.200	ND	0.792		· 1	
is-1,3-Dichloropropene	ND	0.200	ND .	0.907		1	
Cyclohexane	ND	0.200	ND	0.688		1 .	
Dibromochloromethane	. ND	0.200	ND	1.70		1	
Dichlorodifluoromethane	ND	0.200	ND	0.988	•	· 1	
thanol	ND	2.50	ND	4.71		. 1	
thyl Acetate	ND .	0.500	ND	1.80		1	
Ethylbenzene	·. ND	0.200	ND	0.868		. 1	
reon-113	ND	0.200	ND	1.53		. 1	
reon-114	ND	0.200	ND	1.40		1	
lexachlorobutadiene	ND	0.200	ND	2.13	•	1	
sopropanol	ND	0.500	ND	1.23		1	
lethylene chloride	ND	0.500	ND	1.74		1	
-Methyl-2-pentanone	ND	0.200	ND	0.819		1	
lethyl tert butyl ether	ND	0,200	ND	0.720		1 .	
/m-Xylene	ND	0.400	· ND	1.74		1	
			110	1.7 -7		. ' .	

Project Name:

FORMER COMPUTER CIRCUITS

Project Number: TED0001

Lab Number:

L0918894

Report Date:

01/05/10

Method Blank Analysis Batch Quality Control

Analytical Method:

48,TO-15

Analytical Date:

•	ppbV	•	ug/m3			Dilution
Parameter	Results	RDL	Results	RDL	Qualifier	Factor
Volatile Organics in Air (Low Level) -	Mansfield Lab	for sample	e(s): 01-10 Batc	h: WG395	274-4	
Heptane	ND ·	0.200	ND	0.819		1 .
n-Hexane	ND	0.200	ND ·	0.704		1.
Propylene	ND	0.200	ND	0.344		1
Styrene	ND	0.200	ND	0.851		, 1 ·
Tetrachloroethene	. ND	0.200	ND	1.36		1
Tetrahydrofuran	ND	0.200	· ND	0.589		1.1
Toluene	ND	0.200	ND	0.753		1
trans-1,2-Dichloroethene	ND	0.200	ND	0.792		1 .
trans-1,3-Dichloropropene	ND	0.200	ND	0.907		1
Trichloroethene	ND	0.200	ND	1.07		1
Trichlorofluoromethane	ND	0.200	ND	1.12	•	1
Vinyl acetate	. ND	0.200	ND	0.704	•	1
Vinyl bromide	ND	0.200	ND	0.874		1,
Vinyl chloride	ND	0.200	, ND	0.511		1

Project Name:

FORMER COMPUTER CIRCUITS

Lab Number:

L0918894

Project Number: TED0001

Report Date:

01/05/10

Method Blank Analysis Batch Quality Control

Analytical Method:

48,TO-15-SIM

Analytical Date:

	ppbV			ug/m3			Dilution
Parameter	Results	RDL		Results	RDL	Qualifier	Factor
Volatile Organics in Air by SIM - Mans	field Lab for	sample(s):	01-08	Batch:	WG395275-4		
Trichloroethene	ND	0.020		ND	0.107		1

'roject Name:

FORMER COMPUTER CIRCUITS

roject Number:

TED0001

Lab Number:

L0918894

Report Date:

ameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD Qual	RPD Limits
latile Organics in Air (Low Level) - Man	sfield Lab Associate	d sample(s): 01-10 Batch	n: WG395274-3		
1,1,1-Trichloroethane	94	%	70-130	· -	
1,1,2,2-Tetrachloroethane	119		70-130	-	
1,1,2-Trichloroethane	104		70-130		
1,1-Dichloroethane	119	•	70-130	· ·	
1,1-Dichloroethene	92-		70-130	<u>-</u>	
1,2,4-Trichlorobenzene	93		70-130	-	
1,2,4-Trimethylbenzene	109	-	70-130	· .	
1,2-Dibromoethane	101	•	70-130	•	
1,2-Dichlorobenzene	105		70-130	•	
1,2-Dichloroethane	86	•	70-130	· · · · · · · · · · · · · · · · · · ·	•
1,2-Dichloropropane	104	• • • • • • • • • • • • • • • • • • •	70-130		
1,3,5-Trimethylbenzene	107	· •	70-130	·	•
1,3-Butadiene	96		70-130	<u> </u>	
1,3-Dichlorobenzene	107	•	70-130	<u>-</u>	
1,4-Dichlorobenzene	105	•	70-130	· · · · · · · · · · · · · · · · · · ·	
1,4-Dioxane	94	· ·	70-130	-	
2,2,4-Trimethylpentane	101	· · · · · · · · · · · · · · · · · · ·	70-130	-	
2-Butanone	95	, <u>-</u>	70-130	· · · · · · · · · · · · · · · · · · ·	
2-Hexanone	. 96	•	70-130	<u>.</u> .	
3-Chloropropene	93		70-130	_	
4-Ethyltoluene	. 111		70-130		
				·	

oject Name:

FORMER COMPUTER CIRCUITS

oject Number:

TED0001

Lab Number:

L0918894

Report Date:

ameter	LCS %Recovery Qual	LCSD %Recovery Qu	%Recovery al Limits	RPD	Qual	RPD Limits
ıtile Organics in Air (Low Level) - Mansf	ield Lab Associated sampl	e(s): 01-10 Batch: W	G395274-3			
Acetone	102		70-130	•		
Benzene	96	•	70-130	•		
Benzyl chloride	104		70-130	·	• • • • • • • • • • • • • • • • • • • •	
Bromodichloromethane	98	•	70-130		-	
Bromoform	96	· · · · · · · · · · · · · · · · · · ·	70-130		•	
Bromomethane	87	-	70-130	•		
Carbon disulfide	85		70-130	-		
Carbon tetrachloride	92	- -	70-130	•		
Chlorobenzene	99	•	70-130	-		
Chloroethane	93	•	70-130	-		
Chloroform	88	· · ·	70-130	-	•	
Chloromethane	. 94	<u>-</u>	70-130	-		
cis-1,2-Dichloroethene	87	•	70-130	•	*	٠.
cis-1,3-Dichloropropene	102		70-130			
Cyclohexane	94	-	70-130	-		
Dibromochloromethane	97	· -	70-130	-	•	
Dichlorodifluoromethane	85	<u>-</u>	70-130	· .		
Ethyl Alcohol	99	•	70-130	• •, • • •		
Ethyl Acetate	93	· •	70-130	-		
Ethylbenzene	103	<u>.</u>	70-130	-		
1,1,2-Trichloro-1,2,2-Trifluoroethane	93	-	70-130	•		

ject Name:

FORMER COMPUTER CIRCUITS

ject Number: TED0001

Lab Number:

L0918894

Report Date:

neter	LCS %Recovery Qu	LCSD ıal %Recovery	%Recove	ry RPD	Qual	RPD Limits
le Organics in Air (Low Level) - N	Mansfield Lab Associated sa	ample(s): 01-10 Batch:	WG395274-3			
2-Dichloro-1,1,2,2-tetrafluoroethane	90		70-130	· · · · · · · · · · · · · · · · · · ·		
exachlorobutadiene	96		70-130			. •
Propyl Alcohol	88	<u>.</u>	70-130	<u>.</u>	÷*.	
ethylene chloride	96		70-130	•		•
Methyl-2-pentanone	111	•	70-130	-		
ethyl tert butyl ether	118	·	70-130			
n-Xylene	104		70-130			
Kylene	108	• · · · · · · · · · · · · · · · · · · ·	70-130			•
ptane	99	· ·	70-130	·	-	
Hexane -	96		70-130			
pylene	90		70-130			
rene	108		70-130			
trachloroethene	90	-	70-130			
trahydrofuran .	100	-	70-130			
luene	99		70-130	_•	•	
ns-1,2-Dichloroethene	109	44 ** * <u>-</u> -	70-130			
ns-1,3-Dichloropropene	89		. 70-130		•	
chloroethene	88	<u> </u>	70-130	- -		
chlorofluoromethane	91	-	70-130	-	•	
yl acetate		Ω -	70-130	- -		
ył bromide	88	- -	70-130	· · · · · · · · · · · · · · · · · · ·		•

roject Name:

je 50 of 66

FORMER COMPUTER CIRCUITS

roject Number: TED0001

Lab Number:

Report Date:

L0918894 01/05/10

ameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
latile Organics in Air (Low Level) - Man	sfield Lab Associa	ted sample(s)	: 01-10 Batch	n: WG3952	74-3			
Vinyl chloride	91		-		70-130			· · · · · · · · · · · · · · · · · · ·
Naphthalene	94		•		70-130	_		
Propane	.81		-		70-130	_		•
Acrylonitrile	96		-		70-130			
Acrolein	88		<u>.</u> .		70-130	•		
1,1,1,2-Tetrachloroethane	91		<u>.</u>		70-130		· .	•
Isopropylbenzene	106	. •	<u>-</u>	•	70-130			
1,2,3-Trichloropropane	110	•	· <u>-</u>	. 3	70-130			
Acetonitrile	.98		<u>.</u>		70-130			
Bromobenzene	103		_		70-130	•		
Chlorodifluoromethane	82		-		70-130			•
Dichlorofluoromethane	87		-	•	70-130	-	•	
Dibromomethane	92	· .	<u>-</u>		70-130	.: -		
Pentane	85		<u>-</u>		70-130	•	· . ·	
Octane	92		; -		70-130			
Tertiary-Amyl Methyl Ether	91		, <u>'</u>		70-130		;	
o-Chlorotoluene	99	•	· -	-	70-130		•	
p-Chlorotoluene	105		<u>-</u>		70-130	· .		
2,2-Dichloropropane	80		. <u>-</u>		70-130	_		
1,1-Dichloropropene	92		. <u>.</u>	•	70-130			
Isopropyl Ether	91		-		70-130	· .		
	•			•				

Project Name:

FORMER COMPUTER CIRCUITS

Project Number:

TED0001

Lab Number:

L0918894

Report Date:

rameter	LCS %Recovery Qual	LCSD %Recovery Q	%Recovery ual Limits	RPD	Qual	RPD Limits
platile Organics in Air (Low Level) - Ma	ansfield Lab Associated sample	e(s): 01-10 Batch:	NG395274-3			· '
Ethyl-Tert-Butyl-Ether	96		70-130	- ·		
1,2,3-Trichlorobenzene	93	• .	70-130	· .		
Ethyl ether	104	• • • • • • • • • • • • • • • • • • •	70-130	-		
n-Butylbenzene	112	· ·	70-130	-		•
sec-Butylbenzene	108		70-130			•
tert-Butylbenzene	104	-	70-130	-		•
1,2-Dibromo-3-chloropropane	106	- -	70-130		.*	
p-Isopropyltoluene	. 97	. •	70-130	-	•	
n-Propylbenzene	105		70-130	- ,		•
1,3-Dichloropropane	100		70-130	-		,
Methanol	91		70-130			
Butane	88		70-130	-		
Nonane (C9)	113	- · · · · · · · · · · · · · · · · · · ·	70-130	-		
Decane (C10)	110	-	70-130			·
Undecane	107		70-130	· <u>-</u>		· · · · · · · · · · · · · · · · · · ·
Dodecane (C12)	101		70-130	· -		
Butyl Acetate	93		70-130	· 		
tert-Butyl Alcohol	86	•	70-130			
			the second secon			•

Project Name:

FORMER COMPUTER CIRCUITS

Project Number:

TED0001

Lab Number:

L0918894

Report Date:

	LCS			CSD		%Recovery			v v
rameter	%Recovery	Qual	%Re	covery	Qual	Limits	RPD	Qual	RPD Limits
platile Organics in Air by SIM - Ma	ansfield Lab Associated s	ample(s):	01-08	Batch:	WG395275-3	3			· .
1,1,1-Trichloroethane	102			-	÷	70-130			e de la companya de l
1,1,1,2-Tetrachloroethane	85			-		70-130	· -	•	•
1,1,2,2-Tetrachloroethane	85			e di		70-130		•	· · · · · · · · · · · · · · · · · · ·
1,1,2-Trichloroethane	101			-		70-130	,		
1,1-Dichloroethane	93		. ,	_		70-130			-
1,1-Dichloroethene	109			-		70-130	· -		
1,2,4-Trimethylbenzene	80	-			•	70-130	=		
1,2-Dibromoethane	- 89.			, -		70-130	-		
1,2-Dichlorobenzene	80	*.*	•			70-130	e.	. •	
1,2-Dichloroethane	86					70-130	-	•	
1,2-Dichloropropane	102	•		-	•	70-130	-		
1,3,5-Trimethylbenzene	79	-				70-130	-	•	
1,3-Butadiene	114			=		70-130			
1,3-Dichlorobenzene	79			,		70-130			
1,4-Dichlorobenzene	77	•	-	· -		70-130	-		
1,4-Dioxane	91			- ,		70-130	-		
Benzene	94					70-130	-		
Bromodichloromethane	. 104			-		70-130	· -	•	
Bromoform	86			-		70-130			
Bromomethane	110	. *		·-		70-130	_		
Carbon tetrachloride	108			-		70-130			
					•	• •			

FORMER COMPUTER CIRCUITS

oject Number: TED0001

oject Name:

Lab Number:

L0918894

Report Date:

meter	LCS %Recovery	Qual		.CSD ecovery	Qual	%Recovery Limits	RPD	Qual RPD Limits	
tile Organics in Air by SIM - Mansfield Lab	Associated sa	ample(s):	01-08	Batch:	WG395275-3				
hlorobenzene	89					70-130			
Chloroethane	111					70-130		•	
Chloroform	93					70-130	- :	:	
Chloromethane	. 106			-		70-130	· ` . •		
is-1,2-Dichloroethene	89			-		70-130	• •	. · · · · · · · · · · · · · · · · · · ·	
is-1,3-Dichloropropene	100		•	. •	•	70-130			
Dibromochloromethane	92					70-130	•		
ichlorodifluoromethane	107				•	70-130	· •		
thylbenzene	83	, .		<u>.</u>		70-130	<u>-</u>		
1,2-Trichloro-1,2,2-Trifluoroethane	111					70-130		•	
,2-Dichloro-1,1,2,2-tetrafluoroethane	114			-		70-130	-		
lethylene chloride	113	•		-	· / .	70-130	_		
lethyl tert butyl ether	74		•			70-130		<i>.</i>	
aphthalene	77					70-130	· , <u>-</u>		
m-Xylene	. 81	•				70-130	• .		
Xylene	81				•	70-130	-		
yrene	80				. •	70-130	-		
etrachloroethene	88			-		70-130			
bluene	81				-	70-130			
ans-1,2-Dichloroethene	122					70-130	-		
ans-1,3-Dichloropropene	81			-		70-130	.· -		

Project Name:

FORMER COMPUTER CIRCUITS

Project Number: TED0001

Lab Number:

L0918894

Report Date:

01/05/10 ~

							•		
rameter	LCS %Recovery	Qual		.CSD ecovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
platile Organics in Air by SIM - Mansfi	eld Lab Associated	sample(s):	01-08	Batch:	WG395275-	3			
Trichloroethene	98			-		70-130	-		
1,2,4-Trichlorobenzene	79			•		70-130			
Trichlorofluoromethane	110			- ,		70-130	·^.	÷	1.
Hexachlorobutadiene	76				•	70-130	. * _	•	
Vinyl chloride	111	1	-	· · -		70-130			•
Acrylonitrile	88					70-130	• • • • • • • • • • • • • • • • • • •	•	
n-Butylbenzene	86	- 1		-		70-130			
sec-Butylbenzene	80			-		70-130	· -		
Isopropylbenzene	79		•	-		70-130	-		•
p-Isopropyltoluene	75			-		70-130	· · ·	* .	
Acetone	.95			-		70-130	. •		
2-Butanone	82	•				70-130			
4-Methyl-2-pentanone	103			-		70-130			
Halothane	97			-		70-130	•		
1,2,3-Trichlorobenzene	87		-41	-	. •	70-130	٠-	•	

roject Number:

FORMER COMPUTER CIRCUITS

TED0001

Lab Duplicate Analysis
Batch Quality Control

Lab Number:

L0918894

Report Date:

eter		Native Sample		Duplicate Sample	units	RPD	Qual	RPD Limits
Organics in Air (Low	Level) - Mansfield La	b Associated sample(s):	01-10	QC Batch ID: WG	395274-5	QC Sample: L09	918894-05	
-Trichloroethane		ND		ND	ppbV	NC:		25
,2-Tetrachloroethane		ND		ND	ppbV	NC		25
-Trichloroethane	•	ND		ND	ppbV	NC		25
Pichloroethane		ND		ND	ppbV	NC.	•	25
Pichloroethene	٠.	ND		ND ·	ppbV	NC		25
-Trichlorobenzene		ND		ND	ppbV	NC		25
-Trimethylbenzene		ND		ND	ppbV	NC		25
Pibromoethane		ND		ND	ppbV	NC		25
Pichlorobenzene		ND		ND	ppbV	· NC		25
Pichloroethane		ND		ND	ppbV	NC -		25
ichloropropane		ND		ND	ppbV	NC	•	25
-Trimethybenzene	. •	ND		ND	ppbV	NC		25
utadiene		ND		ND	ppbV	NC		. 25
ichlorobenzene		ND		ND	ppbV	NC		25
ichlorobenzene		, ND		, ND	ppbV	NC		25
ioxane		ND .	•	_ ND	ppbV	NC		25
-Trimethylpentane	•	ND		ND	ppbV	NC		25
anone		0.339		0.316	ppbV	. 7		25
xanone		ND		ND	ppbV	NC		25

FORMER COMPUTER CIRCUITS

Project Number: TED0001

Lab Duplicate Analysis
Batch Quality Control

Lab Number:

L0918894

Report Date:

<u>eter</u>	:	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
Organics in Air	(Low Level) - Mansfield Lab	Associated sample(s): 01-10	QC Batch ID: WG395	274-5	QC Sample: L0918894-05	Client ID: IA-5
loropropene		ND	ND	ppbV	NC NC	25
nyltoluene		ND	ND	ppbV	. NC	25
one		3.28	3.25	ppbV	1	25
rene		ND	ND	ppbV	NC	25
yl chloride		ND	ND	ppbV	NC ·	25
nodichloromethane	e Singa sa	ND .	ND	ppbV	NC	25
ıoform		ND	ND	ppbV	NC	25
ıomethane		ND	ND	ppbV	NC	25
on disulfide		ND	ND	ppbV	NC	25
on tetrachloride		ND	ND	ppbV	NC	25
robenzene		ND	ND	ppbV	NC	25
roethane		ND	ND	ppbV	NC	25
roform		ND	ND	ppbV	NC	25
romethane		0.572	0.573	ρpbV	 0	25
,2-Dichloroethene		ND	ND	ppbV	NC	25
,3-Dichloropropene		ND	ND	ppbV	NC	25
ohexane .		ND	ND	ppbV	NC	25
mochloromethane		ND	ND	ppbV	NC	25
orodifluoromethane		0.451	0.439	ppbV	3	25

FORMER COMPUTER CIRCUITS

Project Number: TED0001

Lab Duplicate Analysis
Batch Quality Control

Lab Number:

L0918894

Report Date:

ameter	Native Sample	Duplicate Sample	Units	sRPD	RPD Limits
ıtile Organics in Air (Low Level) - Mansfield Lab	Associated sample(s): 01-10		,	QC Sample: L0918894-05	
thanol	25.0	24.3	ppbV	3	25
thyl Acetate	ND	ND	ppbV	NC	25
thylbenzene	ND	ND .	ppbV	NC	25
reon-113	ND	ND	ppbV	NC	25
reon-114	ND	ND	ppbV	NC	25
exachlorobutadiene	ND	ND .	ppbV	NC	25
opropanol	2.22	2.15	ppbV	3	25
lethylene chloride	ND .	ND	ppbV	NC NC	25
Methyl-2-pentanone	ND	ND	ppbV	NC	25
iethyl tert butyl ether	ND	ND	ppbV	NC	. 25
'm-Xylene	ND	ND	ppbV	, NC	25
Xylene	ND	ND	ppbV	NC	25
eptane	ND	ND	ppbV	NC	25
Hexane	ND	ND	ppbV	NC	25
ropylene	ND	ND	ppbV	NC	25
tyrene	ND	ND	ppbV	NC	25
etrachloroethene~	ND	ND	ppbV	NC	25
ətrahydrofuran	ND	ND	ppbV	NC	25
pluene	ND	ND	ppbV	NC	25

roject Number: TED0001

FORMER COMPUTER CIRCUITS

Lab Duplicate Analysis
Batch Quality Control

Lab Number:

L0918894

Report Date:

eter			<u> </u>	Native Sample	· •	Duplicate Sa	mple	Units	RPD	RPD Limits
Organics in Air (Lo	ow Level)	- Mansfield I	Lab Associ	ated sample(s): 01-10	QC Batch ID:	WG395	274-5 QC	Sample: L09188	94-05 Client ID: IA-5
-1,2-Dichloroethene				ND		ND		ppbV	NC	25
-1,3-Dichloropropene				ND		ND	•	ppbV	NC	25
loroethene		. •		ND	,	ND		ppbV	NC	25
lorofluoromethane				0.218	•	0.211		ppbV	3	25
acetate	. •	e e		ND	1 43 .	ND	•	ppbV	NC	25
bromide	•			ND	:	ND	•	ppbV	NC	25
chloride			•	ND		ND	Ţ	ppbV	NC NC	25
	* *									
		:					٠.	•		•
Organics in Air by	SIM - Mai	nsfield Lab	Associated	sample(s): 01	-08 QC	Batch ID: WG	i395275-5	5 QC Sar	nple: L0918894-0	5 Client ID: IA-5
loroethene				ND		ND		ppbV	NC .	25

FORMER COMPUTER CIRCUITS

Project Number:

Project Name:

TED0001

01051016:14 **Lab Number:** L0918894

Report Date: 01/05/10

Canister and Flow Controller Information

Samplenum	Client ID		Media ID	Media Type	Cleaning Batch ID	Initial Pressure (in. Hg)	Pressure on Receipt (in. Hg)	Flow Out mL/min	Flow In	% RSD
L0918894-01	IA-1	,	0389	#16 AMB		-	-	4.3	4.3	0
L0918894-01	IA-1		388	2.7L Can	L0918249	-29.5	-4.4	-		-
L0918894-02	IA-2		0089	#16 AMB	,	- · ;	-	4.5	4.6	2
L0918894-02	IA-2		149B	2.7L Can	10918249	-29.5	-2.0	÷		•
L0918894-03	IA-3		0143	#16 AMB		-	• ,	4.4	4.6	4
L0918894-03	IA-3		416	2.7L Can	10918249	-29.5	-5.0	-	-	
L0918894-04	IA-4	,	0113	#16 AMB		<u>.</u>		4.2	4.2	0
L0918894-04	IA-4		421	2.7L Can	10918249	-29.5	-3.8	-	-	-
_0918894-05	IA-5		0154	#16 AMB			-	4.3	4.4	2
_0918894-05	IA-5		. 115	2.7L Can	10918249	-29.5	-6.1	-	-	-
_0918894-06	IÀ-6		0427	#16 AMB		_	-	4.4	4.6	4
_0918894-06	IA-6	teritorium marintare kaplant kanayan dayayar marinda L	133	2.7L Can	10918249	-29.2	-4.0			<u>.</u> .
_0918894-07	IA-7		0139	#16 AMB		_	·	4.5	4.6	2 .
.0918894-07	IA-7		232	2.7L Can	10918249	-29.5	-4.2	-	<u>-</u>	
.0918894-08	IA-8		0069	#16 AMB		-	·	4.4	4.4	0
.0918894-08	IA-8		531	2.7L Can	L0918353	-29.5	-4.8		-	-
.0918894-09	NORTH SYSTE	M INFLUENT	0347	#30 SV			-	17.7	14.6	19

FORMER COMPUTER CIRCUITS

Lab Number: L0918894

01051016:14

Project Number:

TED0001

Report Date: 01/05/10

Canister and Flow Controller Information

Samplenum	Client ID	Media ID	Media Type	Cleaning Batch ID	Initial Pressure (in. Hg)	Pressure on Receipt (in. Hg)	Flow Out mL/min	Flow In mL/min	
L0918894-09	NORTH SYSTEM INFLUENT	1748	2.7L Can	L0918353	-29.5	-1.2	-	·.	-
L0918894-10	SOUTH SYSTEM INFLUENT	0335	#16 SV		•	• •	17.6	18.5	5
L0918894-10	SOUTH SYSTEM INFLUENT	1727	2.7L Can	10918249	-29.5	-8.1	-		

01051016:14

Project Name:

FORMER COMPUTER CIRCUITS

Project Number: TED0001

Lab Number: L0918894

Report Date: 01/05/10

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Cooler

Custody Seal

N/A

Present/Intact

Container Info	ormation	•	•	Temp			
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis
L0918894-01A	Canister - 2.7 Liter	N/A	N/A		NA	Present/Intact	TO15-LL(30),TO15-SIM(30)
L0918894-02A	Canister - 2.7 Liter	N/A	N/A		NA	Present/Intact	TO15-LL(30),TO15-SIM(30)
L0918894-03A	Canister - 2.7 Liter	N/A	N/A		NA	Present/Intact	TO15-LL(30),TO15-SIM(30)
L0918894-04A	Canister - 2.7 Liter	N/A	N/A		NĄ	Present/Intact	TO15-LL(30),TO15-SIM(30)
L0918894-05A	Canister - 2.7 Liter	N/A	N/A	,	NÁ	Present/Intact	TO15-LL(30),TO15-SIM(30)
L0918894-06A	Canister - 2.7 Liter	N/A	N/A		NA	Present/Intact	TO15-LL(30),TO15-SIM(30)
L0918894-07A	Canister - 2.7 Liter	N/A	N/A		. NA	Present/Intact	TO15-LL(30),TO15-SIM(30)
L0918894-08A	Canister - 2.7 Liter	N/A	N/A		NA	Present/Intact	TO15-LL(30),TO15-SIM(30)
L0918894-09A	Canister - 2.7 Liter	N/A	N/A		NA	Present/Intact	TO15-LL(30)
L0918894-10A	Canister - 2.7 Liter	N/A	N/A		NA	Present/Intact	TO15-LL(30)

FORMER COMPUTER CIRCUITS

Lab Number:

L0918894

Project Number:

TED0001

Report Date:

01/05/10

GLOSSARY

Acronyms

EPA

· Environmental Protection Agency.

LCS

Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD

Laboratory Control Sample Duplicate: Refer to LCS.

MS

- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.

MSD

· Matrix Spike Sample Duplicate: Refer to MS.

NA

- Not Applicable.

NC

- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

ND

- Not detected at the reported detection limit for the sample.

NI

· Not Ignitable.

RDL

Reported Detection Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD

Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than five times (5x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- The quality control sample exceeds the associated acceptance criteria. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RDL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).

Report Format:

Data Usability Report

FORMER COMPUTER CIRCUITS

Project Number:

TED0001

Lab Number:

L0918894

Report Date:

01/05/10

REFERENCES

Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air. Second Edition. EPA/625/R-96/010b, January 1999.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Woods Hole Labs shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Woods Hole Labs.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certificate/Approval Program Summary

Last revised December 15, 2009 - Mansfield Facility

The following list includes only those analytes/methods for which certification/approval is currently held. For a complete listing of analytes for the referenced methods, please contact your Alpha Customer Service Representative.

Connecticut Department of Public Health Certificate/Lab ID: PH-0141.

Wastewater/Non-Potable Water (Inorganic Parameters: pH, Turbidity, Conductivity, Alkalinity, Aluminum, Antimony, Arsenic, Barium, Beryllium, Boron, Cadmium, Calcium, Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Strontium, Thallium, Tin, Vanadium, Zinc, Total Residue (Solids), Total Suspended Solids (non-filterable), Total Cyanide. Organic Parameters: PCBs, Organochlorine Pesticides, Technical Chlordane, Toxaphene, Acid Extractables, Benzidines, Phthalate Esters, Nitrosamines, Nitroaromatics & Isophorone, PAHs, Haloethers, Chlorinated Hydrocarbons, Volatile Organics.)

Solid Waste/Soil (Inorganic Parameters: pH, Aluminum, Antimony, Arsenic, Barium, Beryllium, Cadmium, Calcium, Chromium, Hexavalent Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Thallium, Vanadium, Zinc, Total Organic Carbon, Total Cyanide, Corrosivity, TCLP 1311. Organic Parameters: PCBs, Organochlorine Pesticides, Technical Chlordane, Toxaphene, Volatile Organics, Acid Extractables, Benzidines, Phthalates, Nitrosamines, Nitroaromatics & Cyclic Ketones, PAHs, Haloethers, Chlorinated Hydrocarbons.)

Florida Department of Health Certificate/Lab ID: E87814. NELAP Accredited.

Non-Potable Water (Inorganic Parameters: SM2320B, EPA 120.1, SM2510B, EPA 245.1, EPA 150.1, EPA 160.2, SM2540D, EPA 335.2, SM2540G, EPA 180.1. Organic Parameters: EPA 625, 608.)

Solid & Chemical Materials (Inorganic Parameters: 6020, 7470, 7471, 9045, 9014. Organic Parameters: EPA 8260, 8270, 8082, 8081.)

Air & Emissions (EPA TO-15.)

Louisiana Department of Environmental Quality Certificate/Lab ID: 03090. NELAP Accredited.

Non-Potable Water (Inorganic Parameters: EPA 120.1, 150.1, 160.2, 180.1, 200.8, 245.1, 310.1, 335.2, 608, 625, 1631, 3010, 3015, 3020, 6020, 9010, 9014, 9040, SM2320B, 2510B, 2540D, 2540G, 4500CN-E, 4500H-B, Organic Parameters: EPA 3510, 3580, 3630, 3640, 3660, 3665, 5030, 8015 (mod), 3570, 8081, 8082, 8260, 8270,

Solid & Chemical Materials (Inorganic Parameters: 6020, 7196, 7470, 7471, 7474, 9010, 9014, 9040, 9045, 9060. Organic Parameters: EPA 8015 (mod), EPA 3570, 1311, 3050, 3051, 3060, 3580, 3630, 3640, 3660, 3665, 5035, 8081, 8082, 8260, 8270.)

Biological Tissue (Inorganic Parameters: EPA 6020. Organic Parameters: EPA 3570, 3510, 3610, 3630, 3640, 8270.)

Maine Department of Human Services Certificate/Lab ID: MA0030.

Wastewater (Inorganic Parameters: EPA 120.1, 300.0, SM 2320, 2510B, 2540C, 2540D, EPA 245.1. Organic Parameters: 608, 624.)

Massachusetts Department of Environmental Protection Certificate/Lab ID: M-MA030.

Non-Potable Water (Inorganic Parameters: SM4500H+B. Organic Parameters: EPA 624.)

New Hampshire Department of Environmental Services Certificate/Lab ID: 2206. NELAP Accredited.

Non-Potable Water (Inorganic Parameters: EPA 200.8, 245.1, 1631E, 120.1, 150.1, 180.1, 310.1, 335.2, 160.2, SM2540D, 2540G, 4500CN-E, 4500H+B, 2320B, 2510B. Organic Parameters: EPA 625, 608.)

New Jersey Department of Environmental Protection Certificate/Lab ID: MA015. NELAP Accredited.

Non-Potable Water (Inorganic Parameters: SW-846 1312, 3010, 3020A, 3015, 6020, SM2320B, EPA 200.8, SM2540C, 2540D, 2540G, EPA 120.1, SM2510B, EPA 180.1, 245.1, 1631E, SW-846 9040B, 6020, 9010B, 9014 Organic Parameters: EPA 608, 625, SW-846 3510C, 3580A, 5030B, 3035L, 5035H, 3630C, 3640A, 3660B, 3665A, 8081A, 8082 8260B, 8270C)

Solid & Chemical Materials (Inorganic Parameters: SW-846 6020, 9010B, 9014, 1311, 1312, 3050B, 3051, 3060A, 7196A, 7470A, 7471A, 9045C, 9060. Organic Parameters: SW-846 3580A, 5030B, 3035L, 5035H, 3630C, 3640A, 3660B, 3665A, 8081A, 8082, 8260B, 8270C, 3570, 8015B.)

Atmospheric Organic Parameters (EPA TO-15)

Biological Tissue (Inorganic Parameters: SW-846 6020 Organic Parameters: SW-846 8270C, 3510C, 3570, 3610B, 3630C, 3640A)

New York Department of Health Certificate/Lab ID: 11627. NELAP Accredited.

Non-Potable Water (Inorganic Parameters: EPA 310.1, SM2320B, EPA 365.2, 160.1, EPA 160.2, SM2540D, EPA 200.8, 6020, 1631E, 245.1, 335.2, 9014, 150.1, 9040B, 120.1, SM2510B, EPA 376.2, 180.1, 9010B. Organic Parameters: EPA 624, 8260B, 8270C, 608, 8081A, 625, 8082, 3510C, 3511, 5030B.)

Solid & Hazardous Waste (Inorganic Parameters: EPA 9040B, 9045C, SW-846 Ch7 Sec 7.3, EPA 6020, 7196A, 7471A, 7474, 9014, 9040B, 9045C, 9010B. Organic Parameters: EPA 8260B, 8270C, 8081A, DRO 8015B, 8082, 1311, 3050B, 3580, 3050B, 3035, 3570, 3051, 5035, 5030B.)

Air & Emissions (EPA TO-15.)

Pennsylvania Department of Environmental Protection Certificate/Lab ID: 68-02089. NELAP Accredited.

Non-Potable Water (Organic Parameters: EPA 5030B, EPA 8260)

Rhode Island Department of Health Certificate/Lab ID: LAO00299. NELAP Accredited via LA-DEQ.

Refer to MA-DEP Certificate for Non-Potable Water.

Refer to LA-DEQ Certificate for Non-Potable Water.

Texas Commission of Environmental Quality Certificate/Lab ID: T104704419-08-TX. NELAP Accredited.

Solid & Chemical Materials (Inorganic Parameters: EPA 6020, 7470, 7471, 1311, 7196, 9014, 9040, 9045, 9060. Organic Parameters: EPA 8015, 8270, 8260, 8081, 8082.)

U.S. Army Corps of Engineers

Department of Defense Certificate/Lab ID: L2217.01.

Non-Potable Water (Inorganic Parameters: EPA 3005A,3020, 6020, 245.1, 245.7, 1631E, 7470A, 7474, 9014, 120.1, 9050A, 180.1, SM4500H-B, 2320B, 2510B, 2540D,9040. Organic Parameters: EPA 3510C, 5030B, 9010B, 624, 8260B, 8270C, 8270 Alk-PAH, 8082, 8081A, 8015 (SHC), 8015 (DRO).)

Solid & Hazardous Waste (Inorganic Parameters: EPA 1311, 1312,3051, 6020, 747A, 7474, 9045C,9060, SM 2540G, ASTM D422-63. Organic Parameters: EPA 3580, 3570, 3540C, 5035, 8260B, 8270C, 8270 Alk-PAH, 8082, 8081A, 8015 (SHC), 8015 (DRO).

Air & Emissions (EPA TO-15.)

Analytes Not Accredited by NELAP

Certification is not available by NELAP for the following analytes: 8270C: Biphenyl.

FOILITA

APPENDIX C DRAFT INSTITUTIONAL CONTROLS

CERTILMANBALIN

JAMES P. RIGANO PARTNER Telephone 631,979,3000 jrigano@certilmanbalin.com

1393 VETERANS MEMORIAL HWY, SCITE 3018 HAUPPAUGE, NY 11788 PHONE: 631.979.3000 • EAX: 631.979.7070 www.certilmanbalin.com

U.S. Environmental Protection Agency (3 copies)

Hazardous Waste Remediation Bureau (2 copies)

NY State Dept. of Environmental Conservation

Emergency & Remedial Response Div.

NY Remediation Branch

290 Broadway, 20th Floor New York, NY 10007-1866

Attn: Computer Circuits Site,

Remedial Project Manager

Albany, NY 12233-7010

Site Project Manager

Attn: Computer Circuits Superfund

625 Broadway

February 4, 2010

Removal Action Branch (3 copies) Response and Prevention Branch U.S. Environmental Protection Agency 2890 Woodbridge Ave., Bldg. 209 (MS-211) Edison, NJ 08837 Attn: Computer Circuits Superfund Site, On-Scene Coordinator

Chief, NY/Caribbean Superfund Branch (1 copy) Office of Regional Counsel US Environmental Protection Agency 290 Broadway, 17th Floor New York, NY 10007-1866 Attn: Henry Guzman, Computer Circuits

Superfund Site, Site Attorney

Computer Circuits Superfund Site Hauppauge, New York

Draft Declaration of Covenants and Restrictions

Dear Madam or Sir:

Re:

Enclosed please find a draft of the Declaration of Covenants and Restrictions.

ery truly yours,

ames P. Rigano

JPR/kad **Enclosures**

K. Almskog (w/enc.)

DRAFT

DECLARATION of COVENANTS and RESTRICTIONS

THIS COVENANT, made the ____ day of _____, 2010, by 145 Marcus Blvd., Inc, a corporation organized existing under the laws of the State of New York and having an office for the transaction of business at 79 Village Hill Drive, Dix Hills, New York 11746.

WHEREAS, 145 Marcus Blvd., Inc. is the subject of an Administrative Order For Remedial Action issued by the U.S. Environmental Protection Agency (EPA) to 145 Marcus Blvd., Inc. under Section 106(a) of the Comprehensive Environmental Response, Compensation, and Liability Act of 1980, as amended, for that real property located at 145 Marcus Boulevard, Hauppauge in the Town of Smithtown, County of Suffolk, State of New York, which consists of one parcel conveyed as follows: (1) by MCS realty Co. to 145 Marcus Blvd., Inc. by deed dated October 31, 1991 and filed in the Suffolk County Clerk's Office on November 26, 1991 at Liber # 11376, Page # 0177 also known as District 0800, Section 185.00, Block 01.00, and Lot 009; and the property being more particularly described in Appendix "A", attached to this declaration and made a part hereof, and hereinafter referred to as "the Property"; and

WHEREAS, the EPA requires that the Property be subject to restrictive covenants.

NOW, THEREFORE, 145 Marcus Blvd., Inc. for itself and its successors and/or assigns, covenants that:

First, the Property subject to this Declaration of Covenants and Restrictions consists of the property described in Appendix A.

Second, the owner of the Property shall restrict the use of the groundwater underlying the Property without treatment rendering it safe for drinking water unless the user first obtains permission to do so from the EPA or if the EPA shall no longer exist, any government agency or agencies subsequently created to protect the environment of the State and the health of the State's citizens, hereinafter referred to as "the Relevant Agency".

Third, the owner of the Property shall restrict new construction outside the existing building, or, if inside the existing building, then if it will cause disruption of the slab or impact the remediation or monitoring systems, unless the potential for vapor intrusion is evaluated and, if necessary, mitigated.

Fourth, the owner of the Property shall restrict use of the Property to commercial or industrial uses.

Fifth, the owner of the Property hereby grants access rights to EPA or EPA's designated agent for the purpose of ensuring compliance with the Administrative Order. Sixth, this Declaration is and shall be deemed a covenant that shall run with the land and shall be binding up on all future owners of the Property, and shall provide that the owner, and its successors and assigns, consents to enforcement by the Relevant Agency of the prohibitions and restrictions of the Administrative Order and hereby covenants not to contest the authority of the Relevant Agency to seek enforcement. Seventh, any deed of conveyance of the Property, or any portion thereof, shall recite, unless the Relevant Agency has consented to the/termination of such covenants and restrictions, that said conveyance is subject to this Declaration of Covenants and Restrictions. IN WITNESS WHEREOF, the undersigned has executed this instrument the day written below 145 Marcus Blvd., Inc. Name: STATE OF NEW YORK)SS: COUNTY OF SUFFOLK On the ___day of ____, in the year ____, before me, the undersigned, personally appeared _____, personally known to me or proved to me on the basis of satisfactory evidence to be the individuals whose names are subscribed to the within instrument and acknowledged to me that they executed the same in their capacities, and that by his signatures on the instrument, the individuals, or the persons upon behalf of which the individuals acted, executed the instrument.

Notary Public

APPENDIX A

BEGINNING at a point on the easterly side of Marcus Blvd. distant 627.45 feet northerly from the northerly end of the curve connecting the easterly side of Marcus Blvd. with the northerly side of Kennedy Drive; running thence North 3 degrees 17 minutes 15 seconds West 311.14 feet along the easterly side of Marcus Blvd.; running thence North 86 degrees 42 minutes 45 seconds East 350.00 feet; running thence South 3 degrees 17 minutes 15 seconds East, 311.14 feet; running thence South 86 degrees 42 minutes 45 seconds West, 350.00 feet to the easterly side of Marcus Blvd. at the point or place of BEGINNING. Said premises are also known and described as 145 Marcus Boulevard, Hauppauge, New York 11788.